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The question we investigate in this note is the following;:

Question 0.1. Let S C [0,1] be any set of reals. Describe the set of k—sums, or countable sums,
namely

kS ={s1+s2+ -+ sk :51,52,...,5, €S} (0.1)
or
sum(S) = {Zs : T a countable subset of S} : (0.2)
seT

In particular, assuming the sumsets are measurable, what is the measure of kS? Of sum(S)?

(In general, the sumset need not be measurable. If S is countable, then any of the sumsets is
also measurable.)

One motivation is the following: suppose you have access to supply of independent samples X
of some discrete distribution F', say Poisson(1).

Question 0.2. How many different samples do you need to simulate a Bernoulli(p) event for some
pe(0,1)?

Alternatively:

Question 0.3. For which p can you simulate a Bernoulli(p) with just one sample from F ¢ With
two? With k?

Without loss of generality, we can assume F' takes the form
F=> s (0.3)

Simulating a Bernoulli(p) event is equivalent to finding an event A, measurable with respect to X,
such that P(A) = p. Since F' is discrete, this is the same as finding a subset I C N such that

Z s; = p. (0.4)

el

Let’s begin by considering a special class of discrete probability sequences: let S = {s;};en be
countable, and assume



1. § is a probability distribution:

> sn=1 (0.5)

i€EN

2. Every tail of (s,) has smaller sum than the previous term:

si > Z s;j for all m € N (0.6)
j>i
(Example 1) The geometric series s; = (1 — a)a’ satisfies these conditions if and only if
a < 1/2. Indeed,
(1—a)ai>2(l—a)aj:ai+1 = l-a>a <= 1/2>a. (0.7)

J>i
Equality holds exactly when a = 1/2 for every ; in that case, sum({1/2,1/4,1/8,...}) = [0, 1],
which is equivalent to the fact that every real number in [0, 1] has a binary decomposition.

Let A denote Lebesgue measure. For countable S and k € N, kS is countable and thus A(kS) = 0,
so it is natural to consider sum(S) in the context of Lebesgue measure. We have the following
characterization of sum(S) in this case.

Theorem 0.4. Let S C [0,1] be a countable set satz’sfying and . We have

A(sum(S)) = lim 27" (1 - En:sn> . (0.8)
=0

n—oo

What makes this case special, and allows this direct computation, is that there are no ‘overlaps’
between sums over different subsets.

Lemma 0.5. Let S C [0,1] be a countable set satisfying . If x € sum(S), then there is a unique
subset I C N such that

x = Z‘S’ (0.9)

Moreover, I is obtained by applying the greedy algorithm to x: for i € N,

iel «— o] +si<a (0.10)
jelnfi-1]

Proof. Suppose I, J C N are two distinct subsets, and by reversing I and J if necessary, let
k=min{leN:lell¢J and JN[] CIN]]}. (0.11)
By the tail bound [0.6] and the definition of k,
Zsi—ZstSk—Zsj>O. (0.12)
el Jj€J >k

S0 > ier si # ZjeJ Sj-



If 2 € sum(S), then the greedy algorithm succeeds. Indeed, choose I such that holds, and
suppose I does not agree with the greedy algorithm, i.e. for some n,

Z si| +sp<xbutnégl. (0.13)
€lnn—1]
Then by
dsi<| DD si|+Ds (0.14)
iel ieln(n—1] j>i
< Z si | + sn (0.15)
i€INn—1]
<z, (0.16)
contradicting

An immediate corollary is:

Corollary 0.6. For S satisfying the greedy algorithm is a bijection between the power set 2N
and sum(S).

The next lemma describes the complement of sum(S) as a countable union of intervals. For
I C N, use sy to denote the sum over I:

St 2281. (0.17)
el

Lemma 0.7. Let S C [0,1] be a countable set satisfying . The set of reals not in the sumset of
S can be written as a union of (open) intervals:

0,1 \sum(S) = (J (51+Zsi,51+sn> = U 4, (0.18)

n>0I1C[n—1] i>n n IC[n—1]

where [n] = {0,1,...,n}, and by convention [—1] = 0. Moreover, the intervals appearing in the
union are all pairwise disjoint.

Proof. Suppose y ¢ sum(S). By the greedy algorithm must fail at some finite stage, i.e. for
some n and I C [n — 1],

81+Zsi<y<51—|—sn. (0.19)
i>n
So it suffices to show that the Aj(n) are disjoint. Let I,J C N be distinct finite subsets, and
consider the intervals Ar;(n) and A;(m). By reversing I and J if necessary, let
E=min{leN:lel,l¢J and JN[] CIN]]}, (0.20)
as in the proof of Then



SI 2 S1A[n] = SJnjn] + Z 8j > 85+ Sm+1, (0.21)
j>n

which implies inf A7(n) > sup A;(m).

Lemma immediately leads to a computation for the measure of sum(S).

Proof of[0-4 By lemma [0.7 and

1 — A(sum(S)) = Z Z (8[+8n—81—28i) (0.22)

n>0IC[n—1] i>n
=) "on (sn -y si) (0.23)
n>0 i>n
n
- Z on (sn - (1 — Z sz>> (0.24)
n>0 =0
N
: n
= lim_ (7;)2 (504 51+ +2sp 1)) (0.25)
N
= lim <—2N+1+1+Zsk(2-2’“+2k+1+---+2N)> (0.26)
N—o0 =0

N
oy 1 _oN+1 [ _ 2
Jim 12 <1 Zsk> (0.27)

k=0
Thus

N
A(sum(S)) = lim 2N*! (1 — an> . (0.28)
n=0

N—o0

For example, when s, = (1 — a)a™ for a < 1/2, we get

A(sum(S)) = lim 28 (1 — (1 - o)) = lim (2a)Vt! =0. (0.29)

N—oo N—oo

This is somewhat surprising: the measure of the sumset is 1 for & = 1/2, but it jumps down to
0 for @« < 1/2 — there is a sharp phase transition.

Before moving on, we present a probabilistic version of the proof of [0.4, which gives some
intuition for the quantities appearing in the first proof.

Probabilistic proof of[0.4 Let U be a uniform random variable on (0, 1), and note that by

A(sum(S)) = P(U € sum(S)). (0.30)



To compute the latter probability, we construct sum(S) by removing intervals from [0, 1] in
stages, a la the Cantor set construction, and at each stage compute the probability that U was in
one of the removed intervals. In the first stage, the interval so — > .., s; is removed; at the nth
stage, we remove the 2" intervals A;(n) for I C [n—1]. By[0.7] these intervals are all disjoint. Note
that M(A7(n)) = sp — >, i for every I C [n —1]. It follows that, letting F;, denote the event
that U is removed at stage n,

P(F,) = 2" <sn -y si> . (0.31)

>n
Thus

P(U ¢ sum(S)) = Y P(F,). (0.32)

n>0

The same computation as in the previous proof finishes the proof.

Further questions:

e This analysis deals with the case where we have access to a single sample of a discrete
distribution function F', and want to simulate a Bernoulli r.v. What if we have access to two
independent samples of F'? Then, if F' =) . s;0;, we can simulate events with probabilities
in the set

sum(S x S) = Z xy: KCSxS8;,. (0.33)
(z,y)eK

Can we describe this set in a simple way? For which S does it have positive measure? Zero
measure?

e Is there a countable set S C [0, 1] such that property fails for infinitely many n, and such
that A\(sum(S)) = 07

e Prove that if S is uncountable, then A(sum(S)) > 0. Can the measure be arbitrarily close to
0 in this case?

e Is there an uncountable set S C [0, 1] such that A(2S) = 0?7 (The cantor set C satisfies
25 =10,2].)

e Suppose we construct S in a random way: for example, fix a distribution function F' on [0, 1],
sample Xo, X1,...1id. ~ F, set Sy = X and recursively define S,, = X,,S,_1; or let (X,,)
have the Poisson-Dirichlet distribution. What is the probability that the random sequence
(Sn)n satisfies What is the distribution of A(sum(S))? (Expectation?)



