Sum Constructions

Jacob Richey

September 23, 2021

The question we investigate in this note is the following:
Question 0.1. Let $S \subset[0,1]$ be any set of reals. Describe the set of k-sums, or countable sums, namely

$$
\begin{equation*}
k S=\left\{s_{1}+s_{2}+\cdots+s_{k}: s_{1}, s_{2}, \ldots, s_{k} \in S\right\} \tag{0.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{sum}(S)=\left\{\sum_{s \in T} s: T \text { a countable subset of } S\right\} \tag{0.2}
\end{equation*}
$$

In particular, assuming the sumsets are measurable, what is the measure of $k S$? Of $\operatorname{sum}(S)$?
(In general, the sumset need not be measurable. If S is countable, then any of the sumsets is also measurable.)

One motivation is the following: suppose you have access to supply of independent samples X of some discrete distribution F, say Poisson(1).

Question 0.2. How many different samples do you need to simulate a Bernoulli(p) event for some $p \in(0,1)$?

Alternatively:
Question 0.3. For which p can you simulate a Bernoulli(p) with just one sample from F? With two? With k ?

Without loss of generality, we can assume F takes the form

$$
\begin{equation*}
F=\sum_{i \in \mathbb{N}} s_{i} \delta_{i} . \tag{0.3}
\end{equation*}
$$

Simulating a $\operatorname{Bernoulli}(p)$ event is equivalent to finding an event A, measurable with respect to X, such that $\mathbb{P}(A)=p$. Since F is discrete, this is the same as finding a subset $I \subset \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i \in I} s_{i}=p . \tag{0.4}
\end{equation*}
$$

Let's begin by considering a special class of discrete probability sequences: let $S=\left\{s_{i}\right\}_{i \in \mathbb{N}}$ be countable, and assume

1. S is a probability distribution:

$$
\begin{equation*}
\sum_{i \in \mathbb{N}} s_{n}=1 \tag{0.5}
\end{equation*}
$$

2. Every tail of $\left(s_{n}\right)$ has smaller sum than the previous term:

$$
\begin{equation*}
s_{i}>\sum_{j>i} s_{j} \text { for all } m \in \mathbb{N} \tag{0.6}
\end{equation*}
$$

(Example 1) The geometric series $s_{i}=(1-\alpha) \alpha^{i}$ satisfies these conditions if and only if $\alpha<1 / 2$. Indeed,

$$
\begin{equation*}
(1-\alpha) \alpha^{i}>\sum_{j>i}(1-\alpha) \alpha^{j}=\alpha^{i+1} \Longleftrightarrow 1-\alpha>\alpha \Longleftrightarrow 1 / 2>\alpha \tag{0.7}
\end{equation*}
$$

Equality holds exactly when $\alpha=1 / 2$ for every i; in that case, $\operatorname{sum}(\{1 / 2,1 / 4,1 / 8, \ldots\})=[0,1]$, which is equivalent to the fact that every real number in $[0,1]$ has a binary decomposition.

Let λ denote Lebesgue measure. For countable S and $k \in \mathbb{N}, k S$ is countable and thus $\lambda(k S)=0$, so it is natural to consider $\operatorname{sum}(S)$ in the context of Lebesgue measure. We have the following characterization of $\operatorname{sum}(S)$ in this case.

Theorem 0.4. Let $S \subset[0,1]$ be a countable set satisfying 0.5 and 0.6. We have

$$
\begin{equation*}
\lambda(\operatorname{sum}(S))=\lim _{n \rightarrow \infty} 2^{n+1}\left(1-\sum_{i=0}^{n} s_{n}\right) . \tag{0.8}
\end{equation*}
$$

What makes this case special, and allows this direct computation, is that there are no 'overlaps' between sums over different subsets.

Lemma 0.5. Let $S \subset[0,1]$ be a countable set satisfying 0.6. If $x \in \operatorname{sum}(S)$, then there is a unique subset $I \subset \mathbb{N}$ such that

$$
\begin{equation*}
x=\sum_{i \in I} s_{i} . \tag{0.9}
\end{equation*}
$$

Moreover, I is obtained by applying the greedy algorithm to $x:$ for $i \in \mathbb{N}$,

$$
\begin{equation*}
i \in I \Longleftrightarrow\left(\sum_{j \in I \cap[i-1]} s_{j}\right)+s_{i}<x \tag{0.10}
\end{equation*}
$$

Proof. Suppose $I, J \subset \mathbb{N}$ are two distinct subsets, and by reversing I and J if necessary, let

$$
\begin{equation*}
k=\min \{l \in \mathbb{N}: l \in I, l \notin J, \text { and } J \cap[l] \subset I \cap[l]\} \tag{0.11}
\end{equation*}
$$

By the tail bound 0.6 and the definition of k,

$$
\begin{equation*}
\sum_{i \in I} s_{i}-\sum_{j \in J} s_{j} \geq s_{k}-\sum_{j>k} s_{j}>0 \tag{0.12}
\end{equation*}
$$

So $\sum_{i \in I} s_{i} \neq \sum_{j \in J} s_{j}$.

If $x \in \operatorname{sum}(S)$, then the greedy algorithm succeeds. Indeed, choose I such that 0.9 holds, and suppose I does not agree with the greedy algorithm, i.e. for some n,

$$
\begin{equation*}
\left(\sum_{i \in I \cap[n-1]} s_{i}\right)+s_{n}<x \text { but } n \notin I . \tag{0.13}
\end{equation*}
$$

Then by 0.6 ,

$$
\begin{align*}
\sum_{i \in I} s_{i} & <\left(\sum_{i \in I \cap[n-1]} s_{i}\right)+\sum_{j>i} s_{j} \tag{0.14}\\
& <\left(\sum_{i \in I \cap[n-1]} s_{i}\right)+s_{n} \tag{0.15}\\
& <x, \tag{0.16}
\end{align*}
$$

contradicting 0.9 .

An immediate corollary is:
Corollary 0.6. For S satisfying 0.6, the greedy algorithm is a bijection between the power set $2^{\mathbb{N}}$ and $\operatorname{sum}(S)$.

The next lemma describes the complement of $\operatorname{sum}(S)$ as a countable union of intervals. For $I \subset \mathbb{N}$, use s_{I} to denote the sum over I :

$$
\begin{equation*}
s_{I}=\sum_{i \in I} s_{i} . \tag{0.17}
\end{equation*}
$$

Lemma 0.7. Let $S \subset[0,1]$ be a countable set satisfying 0.6. The set of reals not in the sumset of S can be written as a union of (open) intervals:

$$
\begin{equation*}
[0,1] \backslash \operatorname{sum}(S)=\bigcup_{n \geq 0} \bigcup_{I \subset[n-1]}\left(s_{I}+\sum_{i>n} s_{i}, s_{I}+s_{n}\right):=\bigcup_{n} \bigcup_{I \subset[n-1]} A_{I}(n), \tag{0.18}
\end{equation*}
$$

where $[n]=\{0,1, \ldots, n\}$, and by convention $[-1]=\emptyset$. Moreover, the intervals appearing in the union are all pairwise disjoint.

Proof. Suppose $y \notin \operatorname{sum}(S)$. By 0.5 , the greedy algorithm must fail at some finite stage, i.e. for some n and $I \subset[n-1]$,

$$
\begin{equation*}
s_{I}+\sum_{i>n} s_{i}<y<s_{I}+s_{n} . \tag{0.19}
\end{equation*}
$$

So it suffices to show that the $A_{I}(n)$ are disjoint. Let $I, J \subset \mathbb{N}$ be distinct finite subsets, and consider the intervals $A_{I}(n)$ and $A_{J}(m)$. By reversing I and J if necessary, let

$$
\begin{equation*}
k=\min \{l \in \mathbb{N}: l \in I, l \notin J, \text { and } J \cap[l] \subset I \cap[l]\}, \tag{0.20}
\end{equation*}
$$

as in the proof of 0.5. Then

$$
\begin{equation*}
s_{I} \geq s_{I \cap[n]} \geq s_{J \cap[n]}+\sum_{j>n} s_{j} \geq s_{J}+s_{m+1} \tag{0.21}
\end{equation*}
$$

which implies $\inf A_{I}(n)>\sup A_{J}(m)$.

Lemma 0.7 immediately leads to a computation for the measure of $\operatorname{sum}(S)$.
Proof of 0.4 . By lemma 0.7 and 0.5 ,

$$
\begin{align*}
1-\lambda(\operatorname{sum}(S)) & =\sum_{n \geq 0} \sum_{I \subset[n-1]}\left(s_{I}+s_{n}-s_{I}-\sum_{i>n} s_{i}\right) \tag{0.22}\\
& =\sum_{n \geq 0} 2^{n}\left(s_{n}-\sum_{i>n} s_{i}\right) \tag{0.23}\\
& =\sum_{n \geq 0} 2^{n}\left(s_{n}-\left(1-\sum_{i=0}^{n} s_{i}\right)\right) \tag{0.24}\\
& =\lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N} 2^{n}\left(s_{0}+s_{1}+\cdots+2 s_{n}-1\right)\right) \tag{0.25}\\
& =\lim _{N \rightarrow \infty}\left(-2^{N+1}+1+\sum_{k=0}^{N} s_{k}\left(2 \cdot 2^{k}+2^{k+1}+\cdots+2^{N}\right)\right) \tag{0.26}\\
& =\lim _{N \rightarrow \infty} 1-2^{N+1}\left(1-\sum_{k=0}^{N} s_{k}\right) \tag{0.27}
\end{align*}
$$

Thus

$$
\begin{equation*}
\lambda(\operatorname{sum}(S))=\lim _{N \rightarrow \infty} 2^{N+1}\left(1-\sum_{n=0}^{N} s_{n}\right) . \tag{0.28}
\end{equation*}
$$

For example, when $s_{n}=(1-\alpha) \alpha^{n}$ for $\alpha<1 / 2$, we get

$$
\begin{equation*}
\lambda(\operatorname{sum}(S))=\lim _{N \rightarrow \infty} 2^{N+1}\left(1-\left(1-\alpha^{N+1}\right)\right)=\lim _{N \rightarrow \infty}(2 \alpha)^{N+1}=0 . \tag{0.29}
\end{equation*}
$$

This is somewhat surprising: the measure of the sumset is 1 for $\alpha=1 / 2$, but it jumps down to 0 for $\alpha<1 / 2$ - there is a sharp phase transition.

Before moving on, we present a probabilistic version of the proof of 0.4 , which gives some intuition for the quantities appearing in the first proof.

Probabilistic proof of 0.4 . Let U be a uniform random variable on $(0,1)$, and note that by 0.5 .

$$
\begin{equation*}
\lambda(\operatorname{sum}(S))=\mathbb{P}(U \in \operatorname{sum}(S)) \tag{0.30}
\end{equation*}
$$

To compute the latter probability, we construct $\operatorname{sum}(S)$ by removing intervals from $[0,1]$ in stages, a la the Cantor set construction, and at each stage compute the probability that U was in one of the removed intervals. In the first stage, the interval $s_{0}-\sum_{i>0} s_{i}$ is removed; at the $n^{t h}$ stage, we remove the 2^{n} intervals $A_{I}(n)$ for $I \subset[n-1]$. By 0.7 , these intervals are all disjoint. Note that $\lambda\left(A_{I}(n)\right)=s_{n}-\sum_{i>n} s_{i}$ for every $I \subset[n-1]$. It follows that, letting F_{n} denote the event that U is removed at stage n,

$$
\begin{equation*}
\mathbb{P}\left(F_{n}\right)=2^{n}\left(s_{n}-\sum_{i>n} s_{i}\right) . \tag{0.31}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathbb{P}(U \notin \operatorname{sum}(S))=\sum_{n \geq 0} \mathbb{P}\left(F_{n}\right) . \tag{0.32}
\end{equation*}
$$

The same computation as in the previous proof finishes the proof.

Further questions:

- This analysis deals with the case where we have access to a single sample of a discrete distribution function F, and want to simulate a Bernoulli r.v. What if we have access to two independent samples of F ? Then, if $F=\sum_{i} s_{i} \delta_{i}$, we can simulate events with probabilities in the set

$$
\begin{equation*}
\operatorname{sum}(S \times S)=\left\{\sum_{(x, y) \in K} x y: K \subset S \times S\right\} \tag{0.33}
\end{equation*}
$$

Can we describe this set in a simple way? For which S does it have positive measure? Zero measure?

- Is there a countable set $S \subset[0,1]$ such that property 0.6 fails for infinitely many n, and such that $\lambda(\operatorname{sum}(S))=0$?
- Prove that if S is uncountable, then $\lambda(\operatorname{sum}(S))>0$. Can the measure be arbitrarily close to 0 in this case?
- Is there an uncountable set $S \subset[0,1]$ such that $\lambda(2 S)=0$? (The cantor set C satisfies $2 S=[0,2]$.
- Suppose we construct S in a random way: for example, fix a distribution function F on $[0,1]$, sample X_{0}, X_{1}, \ldots i.i.d. $\sim F$, set $S_{0}=X_{0}$ and recursively define $S_{n}=X_{n} S_{n-1}$; or let $\left(X_{n}\right)$ have the Poisson-Dirichlet distribution. What is the probability that the random sequence $\left(S_{n}\right)_{n}$ satisfies 0.5? 0.6? What is the distribution of $\lambda(\operatorname{sum}(S))$? (Expectation?)

