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The question we investigate in this note is the following:

Question 0.1. Let S ⊂ [0, 1] be any set of reals. Describe the set of k−sums, or countable sums,
namely

kS = {s1 + s2 + · · ·+ sk : s1, s2, . . . , sk ∈ S} (0.1)

or

sum(S) =

{∑
s∈T

s : T a countable subset of S

}
. (0.2)

In particular, assuming the sumsets are measurable, what is the measure of kS? Of sum(S)?

(In general, the sumset need not be measurable. If S is countable, then any of the sumsets is
also measurable.)

One motivation is the following: suppose you have access to supply of independent samples X
of some discrete distribution F , say Poisson(1).

Question 0.2. How many different samples do you need to simulate a Bernoulli(p) event for some
p ∈ (0, 1)?

Alternatively:

Question 0.3. For which p can you simulate a Bernoulli(p) with just one sample from F? With
two? With k?

Without loss of generality, we can assume F takes the form

F =
∑
i∈N

siδi. (0.3)

Simulating a Bernoulli(p) event is equivalent to finding an event A, measurable with respect to X,
such that P(A) = p. Since F is discrete, this is the same as finding a subset I ⊂ N such that∑

i∈I
si = p. (0.4)

Let’s begin by considering a special class of discrete probability sequences: let S = {si}i∈N be
countable, and assume
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1. S is a probability distribution: ∑
i∈N

sn = 1 (0.5)

2. Every tail of (sn) has smaller sum than the previous term:

si >
∑
j>i

sj for all m ∈ N (0.6)

(Example 1) The geometric series si = (1 − α)αi satisfies these conditions if and only if
α < 1/2. Indeed,

(1− α)αi >
∑
j>i

(1− α)αj = αi+1 ⇐⇒ 1− α > α ⇐⇒ 1/2 > α. (0.7)

Equality holds exactly when α = 1/2 for every i; in that case, sum({1/2, 1/4, 1/8, . . .}) = [0, 1],
which is equivalent to the fact that every real number in [0, 1] has a binary decomposition.

Let λ denote Lebesgue measure. For countable S and k ∈ N, kS is countable and thus λ(kS) = 0,
so it is natural to consider sum(S) in the context of Lebesgue measure. We have the following
characterization of sum(S) in this case.

Theorem 0.4. Let S ⊂ [0, 1] be a countable set satisfying 0.5 and 0.6. We have

λ(sum(S)) = lim
n→∞

2n+1

(
1−

n∑
i=0

sn

)
. (0.8)

What makes this case special, and allows this direct computation, is that there are no ‘overlaps’
between sums over different subsets.

Lemma 0.5. Let S ⊂ [0, 1] be a countable set satisfying 0.6. If x ∈ sum(S), then there is a unique
subset I ⊂ N such that

x =
∑
i∈I

si. (0.9)

Moreover, I is obtained by applying the greedy algorithm to x: for i ∈ N,

i ∈ I ⇐⇒

 ∑
j∈I∩[i−1]

sj

+ si < x. (0.10)

Proof. Suppose I, J ⊂ N are two distinct subsets, and by reversing I and J if necessary, let

k = min{l ∈ N : l ∈ I, l /∈ J, and J ∩ [l] ⊂ I ∩ [l]}. (0.11)

By the tail bound 0.6 and the definition of k,∑
i∈I

si −
∑
j∈J

sj ≥ sk −
∑
j>k

sj > 0. (0.12)

So
∑

i∈I si 6=
∑

j∈J sj .
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If x ∈ sum(S), then the greedy algorithm succeeds. Indeed, choose I such that 0.9 holds, and
suppose I does not agree with the greedy algorithm, i.e. for some n, ∑

i∈I∩[n−1]

si

+ sn < x but n /∈ I. (0.13)

Then by 0.6,

∑
i∈I

si <

 ∑
i∈I∩[n−1]

si

+
∑
j>i

sj (0.14)

<

 ∑
i∈I∩[n−1]

si

+ sn (0.15)

< x, (0.16)

contradicting 0.9.

An immediate corollary is:

Corollary 0.6. For S satisfying 0.6, the greedy algorithm is a bijection between the power set 2N

and sum(S).

The next lemma describes the complement of sum(S) as a countable union of intervals. For
I ⊂ N, use sI to denote the sum over I:

sI =
∑
i∈I

si. (0.17)

Lemma 0.7. Let S ⊂ [0, 1] be a countable set satisfying 0.6. The set of reals not in the sumset of
S can be written as a union of (open) intervals:

[0, 1] \ sum(S) =
⋃
n≥0

⋃
I⊂[n−1]

(
sI +

∑
i>n

si, sI + sn

)
:=
⋃
n

⋃
I⊂[n−1]

AI(n), (0.18)

where [n] = {0, 1, . . . , n}, and by convention [−1] = ∅. Moreover, the intervals appearing in the
union are all pairwise disjoint.

Proof. Suppose y /∈ sum(S). By 0.5, the greedy algorithm must fail at some finite stage, i.e. for
some n and I ⊂ [n− 1],

sI +
∑
i>n

si < y < sI + sn. (0.19)

So it suffices to show that the AI(n) are disjoint. Let I, J ⊂ N be distinct finite subsets, and
consider the intervals AI(n) and AJ(m). By reversing I and J if necessary, let

k = min{l ∈ N : l ∈ I, l /∈ J, and J ∩ [l] ⊂ I ∩ [l]}, (0.20)

as in the proof of 0.5. Then
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sI ≥ sI∩[n] ≥ sJ∩[n] +
∑
j>n

sj ≥ sJ + sm+1, (0.21)

which implies inf AI(n) > supAJ(m).

Lemma 0.7 immediately leads to a computation for the measure of sum(S).

Proof of 0.4. By lemma 0.7 and 0.5,

1− λ(sum(S)) =
∑
n≥0

∑
I⊂[n−1]

(
sI + sn − sI −

∑
i>n

si

)
(0.22)

=
∑
n≥0

2n

(
sn −

∑
i>n

si

)
(0.23)

=
∑
n≥0

2n

(
sn −

(
1−

n∑
i=0

si

))
(0.24)

= lim
N→∞

(
N∑

n=0

2n (s0 + s1 + · · ·+ 2sn − 1)

)
(0.25)

= lim
N→∞

(
−2N+1 + 1 +

N∑
k=0

sk(2 · 2k + 2k+1 + · · ·+ 2N )

)
(0.26)

= lim
N→∞

1− 2N+1

(
1−

N∑
k=0

sk

)
(0.27)

Thus

λ(sum(S)) = lim
N→∞

2N+1

(
1−

N∑
n=0

sn

)
. (0.28)

For example, when sn = (1− α)αn for α < 1/2, we get

λ(sum(S)) = lim
N→∞

2N+1
(
1− (1− αN+1)

)
= lim

N→∞
(2α)N+1 = 0. (0.29)

This is somewhat surprising: the measure of the sumset is 1 for α = 1/2, but it jumps down to
0 for α < 1/2 – there is a sharp phase transition.

Before moving on, we present a probabilistic version of the proof of 0.4, which gives some
intuition for the quantities appearing in the first proof.

Probabilistic proof of 0.4. Let U be a uniform random variable on (0, 1), and note that by 0.5,

λ(sum(S)) = P(U ∈ sum(S)). (0.30)
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To compute the latter probability, we construct sum(S) by removing intervals from [0, 1] in
stages, a la the Cantor set construction, and at each stage compute the probability that U was in
one of the removed intervals. In the first stage, the interval s0 −

∑
i>0 si is removed; at the nth

stage, we remove the 2n intervals AI(n) for I ⊂ [n−1]. By 0.7, these intervals are all disjoint. Note
that λ(AI(n)) = sn −

∑
i>n si for every I ⊂ [n − 1]. It follows that, letting Fn denote the event

that U is removed at stage n,

P(Fn) = 2n

(
sn −

∑
i>n

si

)
. (0.31)

Thus

P(U /∈ sum(S)) =
∑
n≥0

P(Fn). (0.32)

The same computation as in the previous proof finishes the proof.

Further questions:

• This analysis deals with the case where we have access to a single sample of a discrete
distribution function F , and want to simulate a Bernoulli r.v. What if we have access to two
independent samples of F? Then, if F =

∑
i siδi, we can simulate events with probabilities

in the set

sum(S × S) =

 ∑
(x,y)∈K

xy : K ⊂ S × S

 . (0.33)

Can we describe this set in a simple way? For which S does it have positive measure? Zero
measure?

• Is there a countable set S ⊂ [0, 1] such that property 0.6 fails for infinitely many n, and such
that λ(sum(S)) = 0?

• Prove that if S is uncountable, then λ(sum(S)) > 0. Can the measure be arbitrarily close to
0 in this case?

• Is there an uncountable set S ⊂ [0, 1] such that λ(2S) = 0? (The cantor set C satisfies
2S = [0, 2].)

• Suppose we construct S in a random way: for example, fix a distribution function F on [0, 1],
sample X0, X1, . . . i.i.d. ∼ F , set S0 = X0 and recursively define Sn = XnSn−1; or let (Xn)
have the Poisson-Dirichlet distribution. What is the probability that the random sequence
(Sn)n satisfies 0.5? 0.6? What is the distribution of λ(sum(S))? (Expectation?)
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