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Setup: given a binary word x, say x avoids a pattern w € {0,1}¥ if x does
not contain w as a subword, i.e. if for all i,

XiXjt1 " Xiyk F W1W2 " -+ W



Setup: given a binary word x, say x avoids a pattern w € {0,1}¥ if x does
not contain w as a subword, i.e. if for all i,

XiXjt1 " Xiyk F W1W2 " -+ W

Warmup
Let B, be the set of length n words that avoid 1001.
Exponential growth rate of |B,|?

Density of 1s in a typical element of B,? (>, < or = %7)



Follower set graph construction, enumeration of B,

Sequences avoiding 1001 <> paths in Gigo1

0

Figure: Vertices of Gy are proper prefixes of 1001

Bijection: read the edge labels
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B, = paths in G of length n
limp—so0 L log |Ba| = Perron-Frobenius eigenvalue of G ~ 1.867
Uniform measure on paths induces a Markov chain on G:

Py = A,J N
A = adj matrix of G
A, r = PF eigenvalue/eigenvector

Compute stationary measure p for P

asymptotic density of 1s = u(1) = Al



General setup: alphabet [g] on Z¢

Pattern avoiding

A pattern is any map w : K — [q] for a finite K C Z9. A configuration
x : 79 — [q] avoids w if it does not contain any translation of w.

Shift of finite type

| A

Fix a finite family F of patterns on Z9. The shift of finite type
X = X(F) is the set of all configurations x : Z9 — [g] that avoid all
patterns in F.

.




Let X = X(F) be a shift of finite type

For a box V, XV = configurations on V that can occur in elements of X

The entropy exists:

h(X) = I|m m log | XY € [0, log q).




Let X = X(F) be a shift of finite type

For a box V, XV = configurations on V that can occur in elements of X

The entropy exists:

h(X) = I|m m log | XY € [0, log q).

Theorem (Measure of maximal entropy)

There is a probability measure on X which attains the maximum possible
entropy h(X) (both measure-theoretic and topological).

On Z, it's always unique and Markovian (Perron-Frobenius construction)



Large deviations/Gibbs measure formulation

Fix patterns F, weights 5 € R”.
For x : V — [q], set

M}‘ﬁ NGXP(Z — B N ( )a

weF

Ny (x) = number of copies of w in x.

Thermodynamic limit

As V 1749, ,u%ﬁ converges to a probability measure p17 g on
[g]-configurations on Z9.
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M}‘ﬁ NGXP(Z — B N ( )a

weF

Ny (x) = number of copies of w in x.

Thermodynamic limit

As V 1749, ,u%ﬁ converges to a probability measure p17 g on
[g]-configurations on Z9.

On Z, can describe 1 by a transfer matrix



Large deviations/Gibbs measure formulation

Fix patterns F, weights 5 € R”.
For x : V — [q], set

M]—'ﬁ NeXp(Z 5W W(X>7

weF

Ny (x) = number of copies of w in x.

Thermodynamic limit

As V 179, ,uj‘éﬁ converges weakly to a measure j1r 3 on
[g]-configuraitons on Z7.

B — oo: measure of maximal entropy for the shift space X(F)
B = 0: iid Uniform on [q]
8 — —oo: packing with tiles F
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Figure: Sample from pr g with F = {8 8 , 1 i} and 8 = (—4,—4).



Spooky pattern set F = {(%), s, (s

&}, f— —o0?



Figure: Sample from pr g with F = {(£), 4,6, &}, 8 — —c0



Question: How is the shift space X or the Gibbs measure p controlled by
combinatorial structure of F7?
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Question: How is the shift space X or the Gibbs measure p controlled by
combinatorial structure of F7?

@ Ordering shift spaces by entropy
@ Conjugacy problem

@ Pattern densities; correlations



Entropy and hitting time on Z: Abracadabra!
Fix a word w € [g]* (F = {w})

Tw = hitting time of w:

Tw(x) = min{t > 0 Xp_gr1Xt—k42 " Xe = WiW2 -+ Wk }.



Entropy and hitting time on Z: Abracadabra!
Fix a word w € [g]* (F = {w})

Tw = hitting time of w:

Tw(x) = min{t > 0 Xp_gr1Xt—k42 " Xe = WiW2 -+ Wk }.

Auto-correlation polynomial:

JEO(w,w)
where O(w,w) = {j : wiwo - - - Wj = Wy j 1 Wk—j12 - Wk}

e€.g. ¢111(z) = Z3 + 22 + z,; ¢1001(Z) = Z4 + z.



Abracadabra martingale

Under iid Uniform([q]) measure,

Ery = wa(q)'

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko ‘81)
For patterns w,w’ on Z, TFAE:
O Er, <Er,

@ T <stoc Tw!

Q@ h(X(w)) < h(X(w))




Abracadabra martingale

Under iid Uniform([q]) measure,

Ery = wa(q)'

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko ‘81)

For patterns w,w’ on Z, TFAE:
Q Er, <Er,
Q 7w <stoc Tw!
@ h(X(w)) < h(X(w))

Proof: compute with recursions



Nicer proof under a condition on follower set graphs G,,, G,

R
- F-Lr00

Figure: ¢1000(Z) = 247 <Z5101o(2) =z*+ 2% so T1000 <stoc 71010-

Gy = Gy if for every j, you can pair the outgoing edges at j in G,, with
those at j in G, so that the edges in G,, go further to the right.



Nicer proof under a condition on follower set graphs G,,, G,
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Figure: ¢1000(Z) = 247 <Z5101o(2) =z*+ 2% so T1000 <stoc 71010-

Gy = Gy if for every j, you can pair the outgoing edges at j in G,, with
those at j in G, so that the edges in G,, go further to the right.

Theorem (Chandgotia-Marcus-R.-Wu '24)
Gu > G = h(X(w)) < H(X (W) and 7w <stoc Tu'-
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Couple simple random walks &, & on G, G-
o If £ = ¢/, they move together
o If & < &, then & freezes while & moves independently



Proof of GW - GW/ = Tw —<stoc Tw’

Couple simple random walks &, & on G, G-
o If £ = ¢/, they move together
o If & < &, then & freezes while & moves independently

)

SN e talie
J0&"SoRoNe



Proof of GW - GW/ = Tw —<stoc Tw’

Couple simple random walks &, & on G, G-
o If £ = ¢/, they move together
o If & < &, then & freezes while & moves independently

JORGS SONe
OSSR WoNe
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Couple simple random walks &, & on G, G-

o If £ = ¢, they move together

o If & < &, then & freezes while & moves independently
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Couple simple random walks &, & on G, G-
o If £ = ¢/, they move together
o If & < &, then & freezes while & moves independently
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Proof of G, = G, = h(X(w)) < h(X(w'))

Motonicity of the right Perron eigenvector:

Lemma (CMRW ‘24)

The entries of the right eigenvector r of G,, strictly decrease exponentially:

% < h(X(w)) —q+1€(0,1)

Allows direct comparison of the adjacency matrices A, A’



Proof of G, = G, = h(X(w)) < h(X(w'))

Motonicity of the right Perron eigenvector:

Lemma (CMRW ‘24)

The entries of the right eigenvector r of G,, strictly decrease exponentially:

% < h(X(w)) —q+1€(0,1)

Allows direct comparison of the adjacency matrices A, A’

Combinatorics of G,: how does < relate to ¢,,?



Weaker version of [GO81] holds in general setting

Overlap sets O for patterns in Z9: set of translations of w that match w
on the intersection.
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Weaker version of [GO81] holds in general setting

Overlap sets O for patterns in Z9: set of translations of w that match w
on the intersection.

Theorem (CMRW '24)

If two families of patterns F and F' on 79 have the same internal overlap
structure, then XV (F) and XV (F') are in bijection for all V.

Inclusion-exclusion argument

Not clear how to improve to injections, or conjugacy



We can handle some special cases in 2D, e.g:

0 00O

1 000
0 00O

0 00O
0 00O

/

0 00O

0 00O

0 00O



We can handle some special cases in 2D, e.g:

1 000 0 0
W:O 0 0O W,:0 0
0 00O 00
0 00O 00

Lexicographic replacement surjection X(w’) — X(w)

+ entropy minimality = h(X(w)) < h(X(w"))

o O O o

O O O o



Extender set of a finite word w € X is all pairs (a, b) of one-sided infinite
words such that awb € X.

Let X = X(F) be any 1D shift of finite type, w, w’ allowable words in X.
If w, w’ have the same extender set, then TFAE:

o h(X(FU{w})) < h(X(Fu{w'}))
° ¢W(h(X)) < ¢w/(h(X))
o Ex(TW) < Ex(TW/)




Extender set of a finite word w € X is all pairs (a, b) of one-sided infinite
words such that awb € X.

Let X = X(F) be any 1D shift of finite type, w, w’ allowable words in X.
If w, w’ have the same extender set, then TFAE:

o h(X(FU{w})) < h(X(Fu{w'}))
° ¢W(h(X)) < ¢w/(h(X))
o Ex(TW) < Ex(TW/)

Heuristic: 7, &~ Exponential, escape rate = entropy loss

Moment generating function of 7, involves ¢,



Conjugacy problem

Isomorphism of shifts

Let X, Y be 1D shift spaces. A conjugacy f : X — Y is any bijection of
the form

Tl = Tt 2 Gmiialy ™ 00 o 511, 9 el 0 0 )

for some function F, and m,a > 0.




Conjugacy problem

Isomorphism of shifts

Let X, Y be 1D shift spaces. A conjugacy f : X — Y is any bijection of
the form

Tl = Tt 2 Gmiialy ™ 00 o 511, 9 el 0 0 )

for some function F, and m,a > 0.

Conjugacies are local. ‘Sliding block code,” m = memory, a = anticipation

In general, computing conjugacy classes is difficult!
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Theorem (CMRW '24)

If w,w' are 1D patterns with ¢,, = ¢.,/, plus a condition on the
cross-overlaps, then X(w) and X(w') are conjugate.

Theorem (CMRW ‘24)

The graphs G, G, are never isomorphic (for w # w').

Open:
o for 1D shifts X(w), is ¢w = ¢, equivalent to conjugacy?

@ Are X(110110) and X(100100) conjugate? (Note: reversal is not a
conjugacy!)



Gibbs measure p1 7 5
Limit free energy pr(5) = limp_ 2 log Z"(),
Zn(/B) = Z Z exp (_/BWNW(X))
x€{0,1}" weF

Derivatives of p — expectations of observables wrt p



Transfer matrix from weighted graph, e.g 7 = {1,1001}:

1 0 0 1 0
ePr Pt b 0 ebt
A ]:( 15} ) = 0 1 0 0 1
0 0 1 0 0
0 0 0 ePrehion 0

pr(pB) is the (log of the) Perron-Frobenius eigenvalue of Ax(5)



For any g : {0,1}" — R and w € F,

0
mEﬁ[g] = Covg(g, Nw).
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For any g : {0,1}" — R and w € F,

0
%Eﬁ[g] = Covg(g, Nw).

Can compute everything at 5 = 0, but it's not always helpful:

COVﬁzo(Nl, NlOOl) = O(l)
Limit theory for N,,: Analytic Pattern Matching, Jacquet-Szpankowski
Joint CLT for (Ny)wer?



Note a%vp(,é’) =Ps(1{xg--- = v}) = density of v's

%Pg(l{xo .-+ = v}) a monotonic (or constant) function of 5, € (0, c0).

density of 15
3
s
9

0.40 1




Note a%vp(,é’) =Ps(1{xg--- = v}) = density of v's

%Pg(l{xo .-+ = v}) a monotonic (or constant) function of 5, € (0, c0).

0.28

density of 00s

0.26




IID Bernoulli(1/2), hitting time 7, Ni(t) = number of 1s up to time t

~Yw = asymptotic density of 1s, 7|, = density of 1s over x € X"(w)

Theorem (Maga-R 24+)
If v < % for all n, and ~,, < % then




IID Bernoulli(1/2), hitting time 7, Ni(t) = number of 1s up to time t

~Yw = asymptotic density of 1s, 7|, = density of 1s over x € X"(w)

Theorem (Maga-R 24+)
If v < % for all n, and ~,, < % then

ik

Tw

~Yw lives in the shift, Ni(7,) lives in the complement of the shift

Abracadabra martingale is robust, but has limits



Wishlist:
@ Simple combinatorial formula for ordering by density of 1s
o Hitting time beyond Z

@ Entropy in non-amenable setting
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