Patterns and statistics for shifts of finite type

Jacob Richey (Rényi Institute, Budapest)

jfrichey.github.io

LA Probability Forum, October 2024

Advertisement

School on disordered media. Rényi Institute, Budapest. Jan 20-24, '25

- David Belius: Introduction to spin glasses
- Nathanael Berestycki: Liouville quantum gravity and its spectral geometry
- Marek Biskup: Extremal properties of the random walk local time
- Ron Peled: Disordered spin systems, first-passage percolation and minimal surfaces in random environment
- **•** Sergio Simonella: Kinetic limits for the dilute classical gas

School on stochastic interacting particle systems and random matrices. Rényi Institute, Budapest. June 16-20, '25

- Ivan Corwin: The scaling limit of colored ASEP
- Nina Gantert: Exclusion processes: classical results and new questions
- Alice Guionnet: CLT and loop equations for Beta-ensembles
- László Erdős
- Bálint Virág

Setup: given a binary word x , say x *avoids* a pattern $w \in \{0,1\}^k$ if x does not contain w as a subword, i.e. if for all i ,

 $x_i x_{i+1} \cdots x_{i+k} \neq w_1 w_2 \cdots w_k$

Setup: given a binary word x , say x *avoids* a pattern $w \in \{0,1\}^k$ if x does not contain w as a subword, i.e. if for all i ,

$$
x_i x_{i+1} \cdots x_{i+k} \neq w_1 w_2 \cdots w_k
$$

Warmup

Let B_n be the set of length *n* words that avoid 1001.

```
Exponential growth rate of |B_n|?
```
Density of 1s in a typical element of B_n ? $(>, <$ or $=$ $\frac{1}{2}$?)

Follower set graph construction, enumeration of B_n Sequences avoiding $1001 \leftrightarrow$ paths in G_{1001}

Figure: Vertices of G_{1001} are proper prefixes of 1001

Bijection: read the edge labels

 B_n = paths in G of length n

lim_{n→∞} $\frac{1}{n}$ $\frac{1}{n}$ log $|B_n|$ = Perron-Frobenius eigenvalue of $G \approx 1.867$

 $B_n =$ paths in G of length n

lim_{n→∞} $\frac{1}{n}$ $\frac{1}{n}$ log $|B_n|$ = Perron-Frobenius eigenvalue of $G \approx 1.867$ Uniform measure on paths induces a Markov chain on G:

$$
P_{ij} = A_{ij} \frac{r_j}{\lambda r_i}
$$

 $A =$ adj matrix of G

 λ , $r =$ PF eigenvalue/eigenvector

 $B_n =$ paths in G of length n

lim_{n→∞} $\frac{1}{n}$ $\frac{1}{n}$ log $|B_n|$ = Perron-Frobenius eigenvalue of $G \approx 1.867$ Uniform measure on paths induces a Markov chain on G:

$$
P_{ij} = A_{ij} \frac{r_j}{\lambda r_i}
$$

 $A =$ adj matrix of G

 λ , $r =$ PF eigenvalue/eigenvector

Compute stationary measure μ for P

asymptotic density of 1s = $\mu(1) = \hat{v}$

General setup: alphabet $[q]$ on \mathbb{Z}^d

Pattern avoiding

A **pattern** is any map $w: K \to [q]$ for a finite $K \subset \mathbb{Z}^d$. A configuration $\chi:\mathbb{Z}^d\to[q]$ avoids w if it does not contain any translation of $w.$

Shift of finite type

Fix a finite family ${\mathcal F}$ of patterns on ${\mathbb Z}^d.$ The ${\sf shift\,\, of\,\, finite\,\, type}$ $X = X(\mathcal{F})$ is the set of all configurations $x : \mathbb{Z}^d \to [q]$ that avoid all patterns in F .

Let $X = X(F)$ be a shift of finite type

For a box V , $X^V=$ configurations on V that can occur in elements of X

Entropy

The entropy exists:

$$
h(X):=\lim_{V\uparrow\mathbb{Z}^d}\frac{1}{|V|}\log|X^V|\in[0,\log q).
$$

Let $X = X(F)$ be a shift of finite type

For a box V , $X^V=$ configurations on V that can occur in elements of X

Entropy

The entropy exists:

$$
h(X):=\lim_{V\uparrow\mathbb{Z}^d}\frac{1}{|V|}\log|X^V|\in[0,\log q).
$$

Theorem (Measure of maximal entropy)

There is a probability measure on X which attains the maximum possible entropy $h(X)$ (both measure-theoretic and topological).

On Z, it's always unique and Markovian (Perron-Frobenius construction)

Large deviations/Gibbs measure formulation

Fix patterns $\mathcal F$, weights $\beta \in \mathbb R^{\mathcal F}$. For $x: V \rightarrow [q]$, set

$$
\mu^V_{\mathcal{F},\beta}(x) \sim \exp\left(\sum_{w\in\mathcal{F}} -\beta_w N_w(x)\right),
$$

 $N_w(x)$ = number of copies of w in x.

Thermodynamic limit

As $\mathcal{V}\uparrow\mathbb{Z}^d$, $\mu^{\mathcal{V}}_{\mathcal{F},\beta}$ converges to a probability measure $\mu_{\mathcal{F},\beta}$ on [q]-configurations on \mathbb{Z}^d .

Large deviations/Gibbs measure formulation

Fix patterns $\mathcal F$, weights $\beta \in \mathbb R^{\mathcal F}$. For $x: V \rightarrow [q]$, set

$$
\mu^V_{\mathcal{F},\beta}(x) \sim \exp\left(\sum_{w\in\mathcal{F}} -\beta_w N_w(x)\right),
$$

 $N_w(x)$ = number of copies of w in x.

Thermodynamic limit

As $\mathcal{V}\uparrow\mathbb{Z}^d$, $\mu^{\mathcal{V}}_{\mathcal{F},\beta}$ converges to a probability measure $\mu_{\mathcal{F},\beta}$ on [q]-configurations on \mathbb{Z}^d .

On $\mathbb Z$, can describe μ by a transfer matrix

Large deviations/Gibbs measure formulation

Fix patterns $\mathcal F$, weights $\beta \in \mathbb R^{\mathcal F}$. For $x: V \rightarrow [q]$, set

$$
\mu^V_{\mathcal{F},\beta}(x) \sim \exp\left(\sum_{w\in\mathcal{F}} -\beta_w N_w(x)\right),
$$

 $N_w(x)$ = number of copies of w in x.

Thermodynamic limit

As $\mathcal{V}\uparrow\mathbb{Z}^d$, $\mu^{\mathcal{V}}_{\mathcal{F},\beta}$ converges weakly to a measure $\mu_{\mathcal{F},\beta}$ on [q]-configuraitons on \mathbb{Z}^d .

 $\beta \to \infty$: measure of maximal entropy for the shift space $X(\mathcal{F})$ $\beta = 0$: iid Uniform on [q] $\beta \rightarrow -\infty$: packing with tiles F

Figure: Sample from
$$
\mu_{\mathcal{F},\beta}
$$
 with $\mathcal{F} = \begin{Bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{Bmatrix}$, and $\beta = (1,1)$.

Figure: Sample from $\mu_{\mathcal{F},\beta}$ with $\mathcal{F} = \begin{cases} 0 & 0 \\ 0 & 0 \end{cases}$ 0 0 1 1
0 0 1 1 1 1 $\},$ and $\beta = (-4, -4)$.

Spooky pattern set $\mathcal{F} = \{(\ddot{\ddot{\otimes}}), \star\star\star, \circledcirc\}, \mathcal{J}\rightarrow -\infty$?

Figure: Sample from $\mu_{\mathcal{F},\beta}$ with $\mathcal{F} = \{\oplus, \bullet\rightarrow, \circledast, \bullet\uparrow\}$, $\beta \rightarrow -\infty$

• Ordering shift spaces by entropy

- Ordering shift spaces by entropy
- **•** Conjugacy problem

- Ordering shift spaces by entropy
- Conjugacy problem
- Pattern densities; correlations

Entropy and hitting time on \mathbb{Z} : Abracadabra!

Fix a word $w \in [q]^k$ $(\mathcal{F} = \{w\})$

 τ_w = hitting time of w:

$$
\tau_w(x) = \min\{t > 0 : x_{t-k+1}x_{t-k+2}\cdots x_t = w_1w_2\cdots w_k\}.
$$

Entropy and hitting time on \mathbb{Z} : Abracadabra! Fix a word $w \in [q]^k$ $(\mathcal{F} = \{w\})$ τ_w = hitting time of w:

$$
\tau_w(x) = \min\{t > 0 : x_{t-k+1}x_{t-k+2}\cdots x_t = w_1w_2\cdots w_k\}.
$$

Auto-correlation polynomial:

$$
\phi_w(z) = \sum_{j \in \mathcal{O}(w,w)} z^j,
$$

where $\mathcal{O}(w, w) = \{j : w_1w_2 \cdots w_j = w_{k-j+1}w_{k-j+2} \cdots w_k\}.$ e.g. $\phi_{111}(z) = z^3 + z^2 + z$; $\phi_{1001}(z) = z^4 + z$.

Abracadabra martingale

Under iid Uniform $([q])$ measure,

$$
\mathbb{E}\tau_{w}=\phi_{w}(q).
$$

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko '81) For patterns w, w' on \mathbb{Z} , TFAE: **1** $E\tau_{w}$ < $E\tau_{w'}$ $2 \tau_{w} \prec_{stoc} \tau_{w'}$ $\mathbf{\Theta}$ h(X(w)) $\leq h(X(w))$

Abracadabra martingale

Under iid Uniform([q]) measure,

$$
\mathbb{E}\tau_{w}=\phi_{w}(q).
$$

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko '81) For patterns w, w' on \mathbb{Z} , TFAE: **1** $E\tau_{w}$ < $E\tau_{w'}$ $2 \tau_{w} \prec_{stoc} \tau_{w'}$ $\mathbf{\Theta}$ h(X(w)) $\leq h(X(w))$

Proof: compute with recursions

Nicer proof under a condition on follower set graphs G_w , $G_{w'}$

Figure: $\phi_{1000}(z) = z^4$, $\phi_{1010}(z) = z^4 + z^2$, so $\tau_{1000} \prec_{\text{stoc}} \tau_{1010}$.

 $G_w > G_{w'}$ if for every j, you can pair the outgoing edges at j in G_w with those at *j* in $G_{w'}$ so that the edges in G_w go further to the right.

Nicer proof under a condition on follower set graphs G_{w} , $G_{w'}$

Figure: $\phi_{1000}(z) = z^4$, $\phi_{1010}(z) = z^4 + z^2$, so $\tau_{1000} \prec_{\text{stoc}} \tau_{1010}$.

 $G_w > G_{w'}$ if for every j, you can pair the outgoing edges at j in G_w with those at j in $G_{w'}$ so that the edges in G_w go further to the right.

Theorem (Chandgotia-Marcus-R.-Wu '24)

 $G_w \succ G_{w'} \implies h(X(w)) < h(X(w'))$ and $\tau_w \prec_{stoc} \tau_{w'}$.

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

Proof of $G_w \succ G_{w'} \implies h(X(w)) < h(X(w'))$

Motonicity of the right Perron eigenvector:

Lemma (CMRW '24)

The entries of the right eigenvector r of G_w strictly decrease exponentially:

$$
\frac{r_{j+1}}{r_j}\leq h(X(w))-q+1\in(0,1)
$$

Allows direct comparison of the adjacency matrices A, A'

Proof of $G_w \succ G_{w'} \implies h(X(w)) < h(X(w'))$

Motonicity of the right Perron eigenvector:

Lemma (CMRW '24)

The entries of the right eigenvector r of G_w strictly decrease exponentially:

$$
\frac{r_{j+1}}{r_j}\leq h(X(w))-q+1\in(0,1)
$$

Allows direct comparison of the adjacency matrices A, A'

Combinatorics of G_w : how does \prec relate to ϕ_w ?

Weaker version of [GO81] holds in general setting

Overlap sets ${\cal O}$ for patterns in \mathbb{Z}^d : set of translations of w that match w on the intersection.

Weaker version of [GO81] holds in general setting

Overlap sets ${\cal O}$ for patterns in \mathbb{Z}^d : set of translations of w that match w on the intersection.

Theorem (CMRW '24)

If two families of patterns ${\mathcal F}$ and ${\mathcal F}'$ on ${\mathbb Z}^d$ have the same internal overlap structure, then $X^V(\mathcal{F})$ and $X^V(\mathcal{F}')$ are in bijection for all V .

Weaker version of [GO81] holds in general setting

Overlap sets ${\cal O}$ for patterns in \mathbb{Z}^d : set of translations of w that match w on the intersection.

Theorem (CMRW '24)

If two families of patterns ${\mathcal F}$ and ${\mathcal F}'$ on ${\mathbb Z}^d$ have the same internal overlap structure, then $X^V(\mathcal{F})$ and $X^V(\mathcal{F}')$ are in bijection for all V .

Inclusion-exclusion argument

Not clear how to improve to injections, or conjugacy

We can handle some special cases in 2D, e.g:

$$
w = \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \qquad w' = \begin{matrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{matrix}
$$

We can handle some special cases in 2D, e.g:

Lexicographic replacement surjection $X(w') \to X(w)$

+ entropy minimality $\implies h(X(w)) < h(X(w'))$

Extender set of a finite word $w \in X$ is all pairs (a, b) of one-sided infinite words such that $awb \in X$.

Conjecture

Let $X = X(\mathcal{F})$ be any 1D shift of finite type, w, w' allowable words in X . If w, w' have the same extender set, then TFAE:

$$
\bullet \ \ h(X(\mathcal{F}\cup \{w\}))\leq h(X(\mathcal{F}\cup \{w'\}))
$$

- $\phi_w(h(X)) \leq \phi_{w'}(h(X))$
- $\bullet \mathbb{E}_X(\tau_w) \leq \mathbb{E}_X(\tau_{w'})$

Extender set of a finite word $w \in X$ is all pairs (a, b) of one-sided infinite words such that $awb \in X$.

Conjecture

Let $X = X(\mathcal{F})$ be any 1D shift of finite type, w, w' allowable words in X . If w, w' have the same extender set, then TFAE:

$$
\bullet \ \ h(X(\mathcal{F} \cup \{w\})) \leq h(X(\mathcal{F} \cup \{w'\}))
$$

$$
\bullet \ \phi_w(h(X)) \leq \phi_{w'}(h(X))
$$

$$
\bullet\ \mathbb{E}_X(\tau_w)\leq \mathbb{E}_X(\tau_{w'})
$$

Heuristic: $\tau_{w} \approx$ Exponential, escape rate = entropy loss

Moment generating function of τ_w involves ϕ_w

Conjugacy problem

Isomorphism of shifts

Let X, Y be 1D shift spaces. A conjugacy $f : X \rightarrow Y$ is any bijection of the form

$$
f(x)_i = F(x_{i-m}, x_{i-m+1}, \cdots, x_{i-1}, x_i, x_{i+1}, \ldots, x_{i+a})
$$

for some function F , and m , $a \ge 0$.

Conjugacy problem

Isomorphism of shifts

Let X, Y be 1D shift spaces. A conjugacy $f: X \rightarrow Y$ is any bijection of the form

$$
f(x)_i = F(x_{i-m}, x_{i-m+1}, \cdots, x_{i-1}, x_i, x_{i+1}, \ldots, x_{i+a})
$$

for some function F , and m , $a > 0$.

Conjugacies are local. 'Sliding block code,' $m =$ memory, $a =$ anticipation In general, computing conjugacy classes is difficult!

Theorem (CMRW '24)

If w, w' are 1D patterns with $\phi_w = \phi_{w'}$, plus a condition on the cross-overlaps, then $X(w)$ and $X(w')$ are conjugate.

Theorem (CMRW '24)

If w, w' are 1D patterns with $\phi_w = \phi_{w'}$, plus a condition on the cross-overlaps, then $X(w)$ and $X(w')$ are conjugate.

Theorem (CMRW '24)

The graphs G_w , $G_{w'}$ are never isomorphic (for $w \neq w'$).

Theorem (CMRW '24)

If w, w' are 1D patterns with $\phi_w = \phi_{w'}$, plus a condition on the cross-overlaps, then $X(w)$ and $X(w')$ are conjugate.

Theorem (CMRW '24)

The graphs G_w , $G_{w'}$ are never isomorphic (for $w \neq w'$).

Open:

- for 1D shifts $X(w)$, is $\phi_w = \phi_{w'}$ equivalent to conjugacy?
- Are $X(110110)$ and $X(100100)$ conjugate? (Note: reversal is not a conjugacy!)

Gibbs measure $\mu_{\mathcal{F},\beta}$

Limit free energy $p_{\mathcal{F}}(\beta)=\lim_{n\rightarrow\infty}\frac{1}{n}$ $\frac{1}{n}$ log $Z^n(\beta)$,

$$
Z^n(\beta) = \sum_{x \in \{0,1\}^n} \sum_{w \in \mathcal{F}} \exp(-\beta_w N_w(x))
$$

Derivatives of $p \rightarrow$ expectations of observables wrt μ

Transfer matrix from weighted graph, e.g $\mathcal{F} = \{1, 1001\}$:

 $p_{\mathcal{F}}(\beta)$ is the (log of the) Perron-Frobenius eigenvalue of $A_{\mathcal{F}}(\beta)$

Lemma

For any $g: \{0,1\}^n \to \mathbb{R}$ and $w \in \mathcal{F}$,

$$
\frac{\partial}{\partial \beta_w} \mathbb{E}_{\beta}[g] = Cov_{\beta}(g, N_w).
$$

Lemma

For any $g: \{0,1\}^n \to \mathbb{R}$ and $w \in \mathcal{F}$,

$$
\frac{\partial}{\partial \beta_{\sf w}}\mathbb{E}_\beta[g]=\mathsf{Cov}_\beta(g,N_{\sf w}).
$$

Can compute everything at $\beta = 0$, but it's not always helpful:

 $Cov_{\beta=0}(N_1, N_{1001}) = O(1).$

Lemma

For any $g: \{0,1\}^n \to \mathbb{R}$ and $w \in \mathcal{F}$,

$$
\frac{\partial}{\partial \beta_{\mathsf{w}}}\mathbb{E}_{\beta}[g] = \mathsf{Cov}_{\beta}(g,N_{\mathsf{w}}).
$$

Can compute everything at $\beta = 0$, but it's not always helpful:

$$
Cov_{\beta=0}(N_1,N_{1001})=O(1).
$$

Limit theory for N_w : Analytic Pattern Matching, Jacquet-Szpankowski Joint CLT for $(N_w)_{w \in \mathcal{F}}$?

Note
$$
\frac{\partial}{\partial \beta_v} p(\beta) = \mathbb{P}_{\beta} (1\{x_0 \cdots = v\}) =
$$
 density of v's

Hope

∂ $\frac{\partial}{\partial \beta_w}\mathbb{P}_\beta(1\{x_0\cdots=v\})$ a monotonic (or constant) function of $\beta_w\in (0,\infty).$

Note
$$
\frac{\partial}{\partial \beta_v} p(\beta) = \mathbb{P}_{\beta} (1\{x_0 \cdots = v\}) =
$$
 density of v's

Hope

∂ $\frac{\partial}{\partial \beta_w}\mathbb{P}_\beta(1\{x_0\cdots=v\})$ a monotonic (or constant) function of $\beta_w\in (0,\infty).$

IID Bernoulli(1/2), hitting time τ_w , $N_1(t)$ = number of 1s up to time t $\gamma_w=$ asymptotic density of 1s, $\gamma_w^n=$ density of 1s over $x\in\mathcal{X}^n(w)$

Theorem (Maga-R $24+$)

If $\gamma_{\sf w}^{\sf n} < \frac{1}{2}$ $\frac{1}{2}$ for all n, and $\gamma_{\sf w} < \frac{1}{2}$ $\frac{1}{2}$, then $\mathbb{E}\left[\frac{N_1(\tau_{\mathsf{w}})}{\cdot}\right]$ τ_w $\Big] \geq \frac{1}{2}$ $\frac{1}{2}$. IID Bernoulli(1/2), hitting time τ_w , $N_1(t)$ = number of 1s up to time t $\gamma_w=$ asymptotic density of 1s, $\gamma_w^n=$ density of 1s over $x\in\mathcal{X}^n(w)$

Theorem (Maga-R $24+$) If $\gamma_{\sf w}^{\sf n} < \frac{1}{2}$ $\frac{1}{2}$ for all n, and $\gamma_{\sf w} < \frac{1}{2}$ $\frac{1}{2}$, then $\mathbb{E}\left[\frac{N_1(\tau_{\mathsf{w}})}{\cdot}\right]$ τ_w $\Big] \geq \frac{1}{2}$ $\frac{1}{2}$.

 γ_w lives in the shift, $N_1(\tau_w)$ lives in the complement of the shift Abracadabra martingale is robust, but has limits

Wishlist:

- Simple combinatorial formula for ordering by density of 1s
- Hitting time beyond Z
- Entropy in non-amenable setting

References

- Shifts of Finite Type Obtained by Forbidding a Single Pattern. Nishant Chandgotia, Brian Marcus, JR, Chengyu Wu. arXiv:2409.09024
- Word length, bias and bijections in Penney's ante. Mathew Drexel, Xuanshan Peng, JR. arXiv:2409.19195
- String overlaps, pattern matching, and nontransitive games. L.J Guibas, A.M Odlyzko. Journal of Combinatorial Theory, Series A, 1981.
- A Martingale Approach to the Study of Occurrence of Sequence Patterns in Repeated Experiments. Shuo-Yen Robert Li. Annals of Probability, 1980.