Patterns and statistics for shifts of finite type

Jacob Richey (Rényi Institute, Budapest)

jfrichey.github.io

LA Probability Forum, October 2024

Advertisement

School on disordered media. Rényi Institute, Budapest. Jan 20-24, '25

- David Belius: Introduction to spin glasses
- Nathanael Berestycki: Liouville quantum gravity and its spectral geometry
- Marek Biskup: Extremal properties of the random walk local time
- Ron Peled: Disordered spin systems, first-passage percolation and minimal surfaces in random environment
- Sergio Simonella: Kinetic limits for the dilute classical gas

School on stochastic interacting particle systems and random matrices . Rényi Institute, Budapest. June 16-20, '25

- Ivan Corwin: The scaling limit of colored ASEP
- Nina Gantert: Exclusion processes: classical results and new questions
- Alice Guionnet: CLT and loop equations for Beta-ensembles
- László Erdős
- Bálint Virág

Setup: given a binary word x, say x avoids a pattern $w \in \{0,1\}^k$ if x does not contain w as a subword, i.e. if for all *i*,

 $x_i x_{i+1} \cdots x_{i+k} \neq w_1 w_2 \cdots w_k$

Setup: given a binary word x, say x avoids a pattern $w \in \{0,1\}^k$ if x does not contain w as a subword, i.e. if for all *i*,

$$x_i x_{i+1} \cdots x_{i+k} \neq w_1 w_2 \cdots w_k$$

Warmup

Let B_n be the set of length n words that avoid 1001.

```
Exponential growth rate of |B_n|?
```

Density of 1s in a typical element of B_n ? (>, < or = $\frac{1}{2}$?)

Follower set graph construction, enumeration of B_n Sequences avoiding 1001 \leftrightarrow paths in G_{1001}

Figure: Vertices of G_{1001} are proper prefixes of 1001

Bijection: read the edge labels

 B_n = paths in G of length n

 $\lim_{n\to\infty}\frac{1}{n}\log|B_n|$ = Perron-Frobenius eigenvalue of $G \approx 1.867$

 $B_n = \text{paths in } G \text{ of length } n$

 $\lim_{n\to\infty} \frac{1}{n} \log |B_n| =$ Perron-Frobenius eigenvalue of $G \approx 1.867$ Uniform measure on paths induces a Markov chain on G:

$$P_{ij} = A_{ij} \frac{r_j}{\lambda r_i}$$

 $A = \operatorname{adj} \operatorname{matrix} \operatorname{of} G$

 $\lambda, r = \mathsf{PF}$ eigenvalue/eigenvector

 $B_n =$ paths in G of length n

 $\lim_{n\to\infty} \frac{1}{n} \log |B_n| =$ Perron-Frobenius eigenvalue of $G \approx 1.867$ Uniform measure on paths induces a Markov chain on G:

$$P_{ij} = A_{ij} \frac{r_j}{\lambda r_i}$$

 $A = \operatorname{adj} \operatorname{matrix} \operatorname{of} G$

 $\lambda, r = \mathsf{PF}$ eigenvalue/eigenvector

Compute stationary measure μ for ${\it P}$

asymptotic density of 1s $= \mu(1) = \widehat{...}$

General setup: alphabet [q] on \mathbb{Z}^d

Pattern avoiding

A **pattern** is any map $w : K \to [q]$ for a finite $K \subset \mathbb{Z}^d$. A configuration $x : \mathbb{Z}^d \to [q]$ avoids w if it does not contain any translation of w.

Shift of finite type

Fix a finite family \mathcal{F} of patterns on \mathbb{Z}^d . The **shift of finite type** $X = X(\mathcal{F})$ is the set of all configurations $x : \mathbb{Z}^d \to [q]$ that avoid all patterns in \mathcal{F} .

Let $X = X(\mathcal{F})$ be a shift of finite type

For a box V, $X^V =$ configurations on V that can occur in elements of X

Entropy

The entropy exists:

$$h(X) := \lim_{V\uparrow\mathbb{Z}^d} rac{1}{|V|} \log |X^V| \in [0,\log q).$$

Let $X = X(\mathcal{F})$ be a shift of finite type

For a box V, $X^V =$ configurations on V that can occur in elements of X

Entropy

The entropy exists:

$$h(X) := \lim_{V\uparrow\mathbb{Z}^d} rac{1}{|V|} \log |X^V| \in [0,\log q).$$

Theorem (Measure of maximal entropy)

There is a probability measure on X which attains the maximum possible entropy h(X) (both measure-theoretic and topological).

On \mathbb{Z} , it's always unique and Markovian (Perron-Frobenius construction)

Large deviations/Gibbs measure formulation

Fix patterns \mathcal{F} , weights $\beta \in \mathbb{R}^{\mathcal{F}}$. For $x : V \to [q]$, set

$$\mu_{\mathcal{F},\beta}^{V}(x) \sim \exp\left(\sum_{w \in \mathcal{F}} -\beta_{w} N_{w}(x)\right),$$

 $N_w(x) =$ number of copies of w in x.

Thermodynamic limit

As $V \uparrow \mathbb{Z}^d$, $\mu_{\mathcal{F},\beta}^V$ converges to a probability measure $\mu_{\mathcal{F},\beta}$ on [q]-configurations on \mathbb{Z}^d .

Large deviations/Gibbs measure formulation

Fix patterns \mathcal{F} , weights $\beta \in \mathbb{R}^{\mathcal{F}}$. For $x : V \to [q]$, set

$$\mu_{\mathcal{F},\beta}^{V}(x) \sim \exp\left(\sum_{w \in \mathcal{F}} -\beta_{w} N_{w}(x)\right),$$

 $N_w(x) =$ number of copies of w in x.

Thermodynamic limit

As $V \uparrow \mathbb{Z}^d$, $\mu_{\mathcal{F},\beta}^V$ converges to a probability measure $\mu_{\mathcal{F},\beta}$ on [q]-configurations on \mathbb{Z}^d .

On $\mathbb Z$, can describe μ by a transfer matrix

Large deviations/Gibbs measure formulation

Fix patterns \mathcal{F} , weights $\beta \in \mathbb{R}^{\mathcal{F}}$. For $x : V \to [q]$, set

$$\mu_{\mathcal{F},\beta}^{V}(x) \sim \exp\left(\sum_{w \in \mathcal{F}} -\beta_{w} N_{w}(x)\right),$$

 $N_w(x) =$ number of copies of w in x.

Thermodynamic limit

As $V \uparrow \mathbb{Z}^d$, $\mu_{\mathcal{F},\beta}^V$ converges weakly to a measure $\mu_{\mathcal{F},\beta}$ on [q]-configuraitons on \mathbb{Z}^d .

 $\beta \to \infty$: measure of maximal entropy for the shift space $X(\mathcal{F})$ $\beta = 0$: iid Uniform on [q] $\beta \to -\infty$: packing with tiles \mathcal{F}

Figure: Sample from
$$\mu_{\mathcal{F},\beta}$$
 with $\mathcal{F} = \begin{cases} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{cases}$, and $\beta = (1,1)$.

Figure: Sample from $\mu_{\mathcal{F},\beta}$ with $\mathcal{F} = \begin{cases} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{cases}$, and $\beta = (-4, -4)$.

Spooky pattern set $\mathcal{F} = \{\textcircled{3}, \bigstar, \textcircled{3}, \cancel{\beta}, \beta \rightarrow -\infty?$

Figure: Sample from $\mu_{\mathcal{F},\beta}$ with $\mathcal{F} = \{\textcircled{\odot}, \clubsuit, \textcircled{O}, \textcircled{F}\}, \beta \to -\infty$

• Ordering shift spaces by entropy

- Ordering shift spaces by entropy
- Conjugacy problem

- Ordering shift spaces by entropy
- Conjugacy problem
- Pattern densities; correlations

Entropy and hitting time on $\mathbb{Z}:$ Abracadabra!

Fix a word $w \in [q]^k$ $(\mathcal{F} = \{w\})$

 $\tau_w = \text{hitting time of } w$:

$$\tau_w(x) = \min\{t > 0 : x_{t-k+1}x_{t-k+2}\cdots x_t = w_1w_2\cdots w_k\}.$$

Entropy and hitting time on \mathbb{Z} : Abracadabra! Fix a word $w \in [q]^k$ ($\mathcal{F} = \{w\}$) $\tau_w =$ hitting time of w:

$$\tau_w(x) = \min\{t > 0 : x_{t-k+1}x_{t-k+2}\cdots x_t = w_1w_2\cdots w_k\}.$$

Auto-correlation polynomial:

$$\phi_w(z) = \sum_{j \in \mathcal{O}(w,w)} z^j,$$

where $\mathcal{O}(w, w) = \{j : w_1 w_2 \cdots w_j = w_{k-j+1} w_{k-j+2} \cdots w_k\}.$ e.g. $\phi_{111}(z) = z^3 + z^2 + z; \ \phi_{1001}(z) = z^4 + z.$

Abracadabra martingale

Under iid Uniform([q]) measure,

$$\mathbb{E}\tau_{w}=\phi_{w}(q).$$

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko '81) For patterns w, w' on \mathbb{Z} , TFAE: 1 $\mathbb{E}\tau_w \leq \mathbb{E}\tau_{w'}$ 2 $\tau_w \prec_{stoc} \tau_{w'}$ 3 $h(X(w)) \leq h(X(w))$

Abracadabra martingale

Under iid Uniform([q]) measure,

$$\mathbb{E}\tau_{w}=\phi_{w}(q).$$

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko '81) For patterns w, w' on \mathbb{Z} , TFAE: 1 $\mathbb{E}\tau_w \leq \mathbb{E}\tau_{w'}$ 2 $\tau_w \prec_{stoc} \tau_{w'}$ 3 $h(X(w)) \leq h(X(w))$

Proof: compute with recursions

Nicer proof under a condition on follower set graphs $G_w, G_{w'}$

Figure: $\phi_{1000}(z) = z^4$, $\phi_{1010}(z) = z^4 + z^2$, so $\tau_{1000} \prec_{\text{stoc}} \tau_{1010}$.

 $G_w \succ G_{w'}$ if for every *j*, you can pair the outgoing edges at *j* in G_w with those at *j* in $G_{w'}$ so that the edges in G_w go further to the right.

Nicer proof under a condition on follower set graphs $G_w, G_{w'}$

Figure: $\phi_{1000}(z) = z^4$, $\phi_{1010}(z) = z^4 + z^2$, so $\tau_{1000} \prec_{\text{stoc}} \tau_{1010}$.

 $G_w \succ G_{w'}$ if for every *j*, you can pair the outgoing edges at *j* in G_w with those at *j* in $G_{w'}$ so that the edges in G_w go further to the right.

Theorem (Chandgotia-Marcus-R.-Wu '24)

 $G_w \succ G_{w'} \implies h(X(w)) < h(X(w')) \text{ and } \tau_w \prec_{stoc} \tau_{w'}.$

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

- If $\xi = \xi'$, they move together
- If $\xi' < \xi$, then ξ freezes while ξ' moves independently

Proof of $G_w \succ G_{w'} \implies h(X(w)) < h(X(w'))$

Motonicity of the right Perron eigenvector:

Lemma (CMRW '24)

The entries of the right eigenvector r of G_w strictly decrease exponentially:

$$rac{r_{j+1}}{r_j} \leq h(X(w)) - q + 1 \in (0,1)$$

Allows direct comparison of the adjacency matrices A, A'

Proof of $G_w \succ G_{w'} \implies h(X(w)) < h(X(w'))$

Motonicity of the right Perron eigenvector:

Lemma (CMRW '24)

The entries of the right eigenvector r of G_w strictly decrease exponentially:

$$rac{r_{j+1}}{r_j} \leq h(X(w)) - q + 1 \in (0,1)$$

Allows direct comparison of the adjacency matrices A, A'

Combinatorics of G_w : how does \prec relate to ϕ_w ?

Weaker version of [GO81] holds in general setting

Overlap sets \mathcal{O} for patterns in \mathbb{Z}^d : set of translations of w that match w on the intersection.

Weaker version of [GO81] holds in general setting

Overlap sets \mathcal{O} for patterns in \mathbb{Z}^d : set of translations of w that match w on the intersection.

Theorem (CMRW '24)

If two families of patterns \mathcal{F} and \mathcal{F}' on \mathbb{Z}^d have the same internal overlap structure, then $X^V(\mathcal{F})$ and $X^V(\mathcal{F}')$ are in bijection for all V.

Weaker version of [GO81] holds in general setting

Overlap sets \mathcal{O} for patterns in \mathbb{Z}^d : set of translations of w that match w on the intersection.

Theorem (CMRW '24)

If two families of patterns \mathcal{F} and \mathcal{F}' on \mathbb{Z}^d have the same internal overlap structure, then $X^V(\mathcal{F})$ and $X^V(\mathcal{F}')$ are in bijection for all V.

Inclusion-exclusion argument

Not clear how to improve to injections, or conjugacy

We can handle some special cases in 2D, e.g:

We can handle some special cases in 2D, e.g:

w =	1	0	0	0	0	0	0	0
	0	0	0	0	$w'= {0 \atop 0}$	0	0	0
	0	0	0	0	w = 0	0	0	0
	0	0	0	0	0	0	0	0

Lexicographic replacement surjection $X(w') \rightarrow X(w)$

+ entropy minimality $\implies h(X(w)) < h(X(w'))$

Extender set of a finite word $w \in X$ is all pairs (a, b) of one-sided infinite words such that $awb \in X$.

Conjecture

Let $X = X(\mathcal{F})$ be any 1D shift of finite type, w, w' allowable words in X. If w, w' have the same extender set, then TFAE:

•
$$h(X(\mathcal{F} \cup \{w\})) \leq h(X(\mathcal{F} \cup \{w'\}))$$

- $\phi_w(h(X)) \leq \phi_{w'}(h(X))$
- $\mathbb{E}_X(\tau_w) \leq \mathbb{E}_X(\tau_{w'})$

Extender set of a finite word $w \in X$ is all pairs (a, b) of one-sided infinite words such that $awb \in X$.

Conjecture

Let $X = X(\mathcal{F})$ be any 1D shift of finite type, w, w' allowable words in X. If w, w' have the same extender set, then TFAE:

•
$$h(X(\mathcal{F} \cup \{w\})) \leq h(X(\mathcal{F} \cup \{w'\}))$$

•
$$\phi_w(h(X)) \leq \phi_{w'}(h(X))$$

•
$$\mathbb{E}_X(\tau_w) \leq \mathbb{E}_X(\tau_{w'})$$

Heuristic: $\tau_{w} \approx \text{Exponential}$, escape rate = entropy loss

Moment generating function of τ_w involves ϕ_w

Conjugacy problem

Isomorphism of shifts

Let X, Y be 1D shift spaces. A **conjugacy** $f : X \to Y$ is any bijection of the form

$$f(x)_i = F(x_{i-m}, x_{i-m+1}, \cdots, x_{i-1}, x_i, x_{i+1}, \dots, x_{i+n})$$

for some function F, and $m, a \ge 0$.

Conjugacy problem

Isomorphism of shifts

Let X, Y be 1D shift spaces. A **conjugacy** $f : X \to Y$ is any bijection of the form

$$f(x)_i = F(x_{i-m}, x_{i-m+1}, \cdots, x_{i-1}, x_i, x_{i+1}, \dots, x_{i+n})$$

for some function F, and $m, a \ge 0$.

Conjugacies are local. 'Sliding block code,' m = memory, a = anticipation In general, computing conjugacy classes is difficult!

Theorem (CMRW '24)

If w, w' are 1D patterns with $\phi_w = \phi_{w'}$, plus a condition on the cross-overlaps, then X(w) and X(w') are conjugate.

Theorem (CMRW '24)

If w, w' are 1D patterns with $\phi_w = \phi_{w'}$, plus a condition on the cross-overlaps, then X(w) and X(w') are conjugate.

Theorem (CMRW '24)

The graphs G_w , $G_{w'}$ are never isomorphic (for $w \neq w'$).

Theorem (CMRW '24)

If w, w' are 1D patterns with $\phi_w = \phi_{w'}$, plus a condition on the cross-overlaps, then X(w) and X(w') are conjugate.

Theorem (CMRW '24)

The graphs G_w , $G_{w'}$ are never isomorphic (for $w \neq w'$).

Open:

- for 1D shifts X(w), is $\phi_w = \phi_{w'}$ equivalent to conjugacy?
- Are X(110110) and X(100100) conjugate? (Note: reversal is not a conjugacy!)

Gibbs measure $\mu_{\mathcal{F},\beta}$

Limit free energy $p_{\mathcal{F}}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log Z^n(\beta)$,

$$Z^{n}(\beta) = \sum_{x \in \{0,1\}^{n}} \sum_{w \in \mathcal{F}} \exp\left(-\beta_{w} \mathcal{N}_{w}(x)\right)$$

Derivatives of ho
ightarrow expectations of observables wrt μ

Transfer matrix from weighted graph, e.g $\mathcal{F} = \{1, 1001\}$:

 $p_{\mathcal{F}}(\beta)$ is the (log of the) Perron-Frobenius eigenvalue of $A_{\mathcal{F}}(\beta)$

Lemma

For any $g: \{0,1\}^n \to \mathbb{R}$ and $w \in \mathcal{F}$,

$$rac{\partial}{\partialeta_w}\mathbb{E}_eta[g]=\mathit{Cov}_eta(g,\mathit{N_w}).$$

Lemma

For any $g: \{0,1\}^n \to \mathbb{R}$ and $w \in \mathcal{F}$,

$$rac{\partial}{\partialeta_w}\mathbb{E}_eta[g]=\mathit{Cov}_eta(g,\mathit{N_w}).$$

Can compute everything at $\beta = 0$, but it's not always helpful:

 $Cov_{\beta=0}(N_1, N_{1001}) = O(1).$

Lemma

For any $g: \{0,1\}^n \to \mathbb{R}$ and $w \in \mathcal{F}$,

$$rac{\partial}{\partialeta_w}\mathbb{E}_eta[g]=\mathit{Cov}_eta(g,\mathit{N_w}).$$

Can compute everything at $\beta = 0$, but it's not always helpful:

$$Cov_{\beta=0}(N_1, N_{1001}) = O(1).$$

Limit theory for N_w : Analytic Pattern Matching, Jacquet-Szpankowski Joint CLT for $(N_w)_{w \in \mathcal{F}}$?

Note
$$\frac{\partial}{\partial \beta_v} p(\beta) = \mathbb{P}_{\beta}(1\{x_0 \cdots = v\}) = \text{density of } v$$
's

Hope

 $\frac{\partial}{\partial \beta_w} \mathbb{P}_{\beta}(1\{x_0 \cdots = v\})$ a monotonic (or constant) function of $\beta_w \in (0, \infty)$.

Note
$$\frac{\partial}{\partial \beta_v} p(\beta) = \mathbb{P}_{\beta}(1\{x_0 \cdots = v\}) = \text{density of } v$$
's

Hope

 $rac{\partial}{\partial eta_w} \mathbb{P}_{eta}(1\{x_0\cdots = v\})$ a monotonic (or constant) function of $eta_w \in (0,\infty)$.

IID Bernoulli(1/2), hitting time τ_w , $N_1(t) =$ number of 1s up to time t $\gamma_w =$ asymptotic density of 1s, $\gamma_w^n =$ density of 1s over $x \in X^n(w)$

Theorem (Maga-R '24+)

If $\gamma_{w}^{n} < \frac{1}{2}$ for all n, and $\gamma_{w} < \frac{1}{2}$, then $\mathbb{E}\left[\frac{N_{1}(\tau_{w})}{\tau_{w}}\right] \geq \frac{1}{2}.$

IID Bernoulli(1/2), hitting time τ_w , $N_1(t) =$ number of 1s up to time t $\gamma_w =$ asymptotic density of 1s, $\gamma_w^n =$ density of 1s over $x \in X^n(w)$

Theorem (Maga-R '24+) If $\gamma_{w}^{n} < \frac{1}{2}$ for all n, and $\gamma_{w} < \frac{1}{2}$, then $\mathbb{E}\left[\frac{N_{1}(\tau_{w})}{\tau_{w}}\right] \geq \frac{1}{2}.$

 γ_w lives in the shift, $N_1(\tau_w)$ lives in the complement of the shift Abracadabra martingale is robust, but has limits Wishlist:

- Simple combinatorial formula for ordering by density of 1s
- $\bullet\,$ Hitting time beyond $\mathbb Z$
- Entropy in non-amenable setting

References

- Shifts of Finite Type Obtained by Forbidding a Single Pattern. Nishant Chandgotia, Brian Marcus, JR, Chengyu Wu. arXiv:2409.09024
- Word length, bias and bijections in Penney's ante. Mathew Drexel, Xuanshan Peng, JR. arXiv:2409.19195
- String overlaps, pattern matching, and nontransitive games. L.J Guibas, A.M Odlyzko. Journal of Combinatorial Theory, Series A, 1981.
- A Martingale Approach to the Study of Occurrence of Sequence Patterns in Repeated Experiments. Shuo-Yen Robert Li. Annals of Probability, 1980.