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Setup: given a binary word x , say x avoids a pattern w ∈ {0, 1}k if x does
not contain w as a subword, i.e. if for all i ,

xixi+1 · · · xi+k ̸= w1w2 · · ·wk

Warmup

Let Bn be the set of length n words that avoid 1001.

Exponential growth rate of |Bn|?

Density of 1s in a typical element of Bn? (>,< or = 1
2?)
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Follower set graph construction, enumeration of Bn

Sequences avoiding 1001 ↔ paths in G1001

Figure: Vertices of G1001 are proper prefixes of 1001

Bijection: read the edge labels



Bn = paths in G of length n

limn→∞
1
n log |Bn| = Perron-Frobenius eigenvalue of G ≈ 1.867

Uniform measure on paths induces a Markov chain on G :

Pij = Aij
rj
λri

A = adj matrix of G

λ, r = PF eigenvalue/eigenvector

Compute stationary measure µ for P

asymptotic density of 1s = µ(1) =
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General setup: alphabet [q] on Zd

Pattern avoiding

A pattern is any map w : K → [q] for a finite K ⊂ Zd . A configuration
x : Zd → [q] avoids w if it does not contain any translation of w .

Shift of finite type

Fix a finite family F of patterns on Zd . The shift of finite type
X = X (F) is the set of all configurations x : Zd → [q] that avoid all
patterns in F .



Let X = X (F) be a shift of finite type

For a box V , XV = configurations on V that can occur in elements of X

Entropy

The entropy exists:

h(X ) := lim
V ↑Zd

1

|V |
log |XV | ∈ [0, log q).

Theorem (Measure of maximal entropy)

There is a probability measure on X which attains the maximum possible
entropy h(X ) (both measure-theoretic and topological).

On Z, it’s always unique and Markovian (Perron-Frobenius construction)
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Large deviations/Gibbs measure formulation

Fix patterns F , weights β ∈ RF .
For x : V → [q], set

µV
F ,β(x) ∼ exp

(∑
w∈F

−βwNw (x)

)
,

Nw (x) = number of copies of w in x .

Thermodynamic limit

As V ↑ Zd , µV
F ,β converges to a probability measure µF ,β on

[q]-configurations on Zd .

On Z, can describe µ by a transfer matrix
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Large deviations/Gibbs measure formulation

Fix patterns F , weights β ∈ RF .
For x : V → [q], set

µV
F ,β(x) ∼ exp

(∑
w∈F

−βwNw (x)

)
,

Nw (x) = number of copies of w in x .

Thermodynamic limit

As V ↑ Zd , µV
F ,β converges weakly to a measure µF ,β on

[q]-configuraitons on Zd .

β → ∞: measure of maximal entropy for the shift space X (F)
β = 0: iid Uniform on [q]
β → −∞: packing with tiles F



Figure: Sample from µF,β with F =

{
0 0
0 0

,
1 1
1 1

}
, and β = (1, 1).



Figure: Sample from µF,β with F =

{
0 0
0 0

,
1 1
1 1

}
, and β = (−4,−4).



Spooky pattern set F = { , , , }, β → −∞?



Figure: Sample from µF,β with F = { , , , } , β → −∞



Question: How is the shift space X or the Gibbs measure µ controlled by
combinatorial structure of F?

Ordering shift spaces by entropy

Conjugacy problem

Pattern densities; correlations
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Entropy and hitting time on Z: Abracadabra!

Fix a word w ∈ [q]k (F = {w})

τw = hitting time of w :

τw (x) = min{t > 0 : xt−k+1xt−k+2 · · · xt = w1w2 · · ·wk}.

Auto-correlation polynomial:

ϕw (z) =
∑

j∈O(w ,w)

z j ,

where O(w ,w) = {j : w1w2 · · ·wj = wk−j+1wk−j+2 · · ·wk}.

e.g. ϕ111(z) = z3 + z2 + z ; ϕ1001(z) = z4 + z .
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Abracadabra martingale

Under iid Uniform([q]) measure,

Eτw = ϕw (q).

The same statistic controls the entropy:

Theorem (Guibas-Odlyzko ‘81)

For patterns w ,w ′ on Z, TFAE:
1 Eτw ≤ Eτw ′

2 τw ≺stoc τw ′

3 h(X (w)) ≤ h(X (w))

Proof: compute with recursions
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Nicer proof under a condition on follower set graphs Gw ,Gw ′

Figure: ϕ1000(z) = z4, ϕ1010(z) = z4 + z2, so τ1000 ≺stoc τ1010.

Gw ≻ Gw ′ if for every j , you can pair the outgoing edges at j in Gw with
those at j in Gw ′ so that the edges in Gw go further to the right.

Theorem (Chandgotia-Marcus-R.-Wu ‘24)

Gw ≻ Gw ′ =⇒ h(X (w)) < h(X (w ′)) and τw ≺stoc τw ′ .
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Proof of Gw ≻ Gw ′ =⇒ τw ≺stoc τw ′

Couple simple random walks ξ, ξ′ on Gw ,Gw ′ :

If ξ = ξ′, they move together

If ξ′ < ξ, then ξ freezes while ξ′ moves independently
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Proof of Gw ≻ Gw ′ =⇒ h(X (w)) < h(X (w ′))

Motonicity of the right Perron eigenvector:

Lemma (CMRW ‘24)

The entries of the right eigenvector r of Gw strictly decrease exponentially:

rj+1

rj
≤ h(X (w))− q + 1 ∈ (0, 1)

Allows direct comparison of the adjacency matrices A,A′

Combinatorics of Gw : how does ≺ relate to ϕw?
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Weaker version of [GO81] holds in general setting

Overlap sets O for patterns in Zd : set of translations of w that match w
on the intersection.

Theorem (CMRW ‘24)

If two families of patterns F and F ′ on Zd have the same internal overlap
structure, then XV (F) and XV (F ′) are in bijection for all V .

Inclusion-exclusion argument

Not clear how to improve to injections, or conjugacy
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We can handle some special cases in 2D, e.g:

w =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

w ′ =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Lexicographic replacement surjection X (w ′) → X (w)

+ entropy minimality =⇒ h(X (w)) < h(X (w ′))
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Extender set of a finite word w ∈ X is all pairs (a, b) of one-sided infinite
words such that awb ∈ X .

Conjecture

Let X = X (F) be any 1D shift of finite type, w ,w ′ allowable words in X .
If w ,w ′ have the same extender set, then TFAE:

h(X (F ∪ {w})) ≤ h(X (F ∪ {w ′}))
ϕw (h(X )) ≤ ϕw ′(h(X ))

EX (τw ) ≤ EX (τw ′)

Heuristic: τw ≈ Exponential, escape rate = entropy loss

Moment generating function of τw involves ϕw
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Conjugacy problem

Isomorphism of shifts

Let X ,Y be 1D shift spaces. A conjugacy f : X → Y is any bijection of
the form

f (x)i = F (xi−m, xi−m+1, · · · , xi−1, xi , xi+1, . . . , xi+a)

for some function F , and m, a ≥ 0.

Conjugacies are local. ‘Sliding block code,’ m = memory, a = anticipation

In general, computing conjugacy classes is difficult!
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Theorem (CMRW ‘24)

If w ,w ′ are 1D patterns with ϕw = ϕw ′ , plus a condition on the
cross-overlaps, then X (w) and X (w ′) are conjugate.

Theorem (CMRW ‘24)

The graphs Gw , Gw ′ are never isomorphic (for w ̸= w ′).

Open:

for 1D shifts X (w), is ϕw = ϕw ′ equivalent to conjugacy?

Are X (110110) and X (100100) conjugate? (Note: reversal is not a
conjugacy!)
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Gibbs measure µF ,β

Limit free energy pF (β) = limn→∞
1
n logZ

n(β),

Zn(β) =
∑

x∈{0,1}n

∑
w∈F

exp (−βwNw (x))

Derivatives of p → expectations of observables wrt µ



Transfer matrix from weighted graph, e.g F = {1, 1001}:

AF (β) =


1 0 0 1 0
eβ1 eβ1 eβ1 0 eβ1

0 1 0 0 1
0 0 1 0 0
0 0 0 eβ1eβ1001 0


pF (β) is the (log of the) Perron-Frobenius eigenvalue of AF (β)



Lemma

For any g : {0, 1}n → R and w ∈ F ,

∂

∂βw
Eβ[g ] = Covβ(g ,Nw ).

Can compute everything at β = 0, but it’s not always helpful:

Covβ=0(N1,N1001) = O(1).

Limit theory for Nw : Analytic Pattern Matching, Jacquet-Szpankowski

Joint CLT for (Nw )w∈F?
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Note ∂
∂βv

p(β) = Pβ(1{x0 · · · = v}) = density of v ’s

Hope
∂

∂βw
Pβ(1{x0 · · · = v}) a monotonic (or constant) function of βw ∈ (0,∞).
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IID Bernoulli(1/2), hitting time τw , N1(t) = number of 1s up to time t

γw = asymptotic density of 1s, γnw = density of 1s over x ∈ X n(w)

Theorem (Maga-R ‘24+)

If γnw < 1
2 for all n, and γw < 1

2 , then

E
[
N1(τw )

τw

]
≥ 1

2
.

γw lives in the shift, N1(τw ) lives in the complement of the shift

Abracadabra martingale is robust, but has limits
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Wishlist:

Simple combinatorial formula for ordering by density of 1s

Hitting time beyond Z
Entropy in non-amenable setting
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