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1 Introduction

In this note we consider words over an alphabet A, typically A = {0, 1}, (and possibly A = [q] for
some positive integer q or A = N), conditioned on avoiding some pattern set S. This can mean a
few different things. So far we have focused on taking ‘pattern’ to mean ‘subword,’ i.e. take S ⊂ Ω,
where Ωn = An is the set of sequences of length n and Ω = ∪nΩn, and write

Ωn(S) = {ω ∈ Ωn : ω does not contain s as a subword for any s ∈ S}. (1.1)
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Here ‘subword’ means ‘consecutive subsequence:’ 11 is a subword of 1101, but 111 is not.
(Disallowing arbitrary subsequences to match S seems quite restrictive, but could be interesting
too.) For example, with A = {0, 1} and S = {11, 1001}, we have

Ω4(S) = {0000, 0001, 0010, 0100, 1000, 1010, 0101} (1.2)

Of course, these Ωn(S) generate all possible events if any sets S are allowed: we have in mind
‘small’ sets S. We want to study random words sampled from some measure on Ωn(S), or if it makes
sense, Ω(S), or Ω∞(S): two examples to keep in mind are an iid word of fixed length conditioned
to have no subword in S, or a word generated with iid bits, one bit at a time, and stopped on
containing some word in S as a subword. The natural limits for these objects are shifts of finite
type. There is also work focusing on the expected hitting time of a given word (Feller has a few
pages on it), and facts about a related ‘intransitive dice’ game (originally from Conway).

A more topical connection is with pattern avoiding permutations, where a finite ‘pattern’ per-
mutation on k letters is chosen, and a uniform random permutation X is conditioned on ‘avoiding’
σ, i.e. having no subsequence I = (i1, i2, . . . , ik) with i1 < i2 < · · · < ik such that

XI = (Xij )j∈[k] is order-isomorphic to σ, (1.3)

i.e. for any a, b ∈ [k], Xia ≤ Xib ⇐⇒ σ(a) ≤ σ(b). The same question can be asked for any
random sequence X, say iid from a discrete distribution. Do we recover phenomena similar to the
permutation case? It seems there is some work on this, in the permutation-avoiding literature, where
there are some recursive techniques that apply to general sequences X (not just permutations).

Let X denote a random instance of one of these processes. The over-arching questions we are
interested in are:

1. How does the conditioning affect typical properties of X, like the density of each letter of
A, or ‘random walk’ properties of X? We can compute these kinds of things exactly
with linear algebra/generating functions for the limiting SFT.

2. Is there a simple probabilitistic description of the conditional lawX? The limiting measure
is a Markov Chain in the case of SFTs. Gibbs measures give a somewhat nice
way to interpolate. Generally speaking X has complex structure.

3. Viewed as the underlying randomness of a random walk, does a scaled version of X converge
to a diffusion? (e.g. if the alphabet is {−1, 1}, does it converge to BM?) The book Analytic
Pattern Matching has some possibly relevant CLTs for this? Probably because
everything is local it will converge to BM with drift.

4. For non-trivial sets S, |Ωn(S)| ≪ |Ωn| = |A|n, so X lives on a set of vanishing measure.
Despite this, is there a natural limiting measure as n → ∞, i.e. a measure on Ω∞ (infinite
strings) supported on strings that avoid S? For ’isomorphic’ pattern avoidance, there
is a limit in permuton space; for subword avoidance, shift spaces and measures
of maximal entropy give a full description.

5. Is X Markovian, or approximately markovian? Is it possible to construct X one bit at a time
by recording the output of a simple markov graph? (Simulations suggest this is possible, up
to some ‘edge’ effects. This would be nice – sampling random pattern avoiding permutations
is a hot topic.) A: For subword avoidance, yes: the measure of maximal entropy
on a shift space is a markov chain in some presentation.
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These models seem to have similar flavour to the maximal greedy independent set and the hard
core model.
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2 Substring patterns

2.1 Definitions

Already the case of excluding single binary words leads to interesting phenomena. Set A = [q], and
suppose S is a single word of length l, S = {w}, w = w1w2 · · ·wl for some wi ∈ A. The first order
of business here is to compute |Ωn(w)|.

Definition 2.1. For a fixed word w, let λw denote the asymptotic growth rate of |Ωn(w)|, i.e.

log λw = lim
n→∞

1

n
log |Ωn(w)|. (2.1)

We have that:

Lemma 2.2. Except in the trivial cases where q = 2 and w ∈ {0, 1, 10, 01}, the limit in 2.1 exists
and λw ∈ (1, 2).

Proof. An elementary proof is to use sub-additivity of the Ωn.

λw is the (exponential of the) topological entropy of the shift of finite type with forbidden word
w. Alternatively, λw is the Perron-Frobenius eigenvalue of the corresponding edge-shift matrix.

One can also compute combinatorially, which involves typical recurison/generating function
ideas, but with some novel elements. See section 2.2.

We have the following basic heuristic regarding entropies. Generate iid digits, and stop when
you observe the word w for the first time. Let τ = τw be the number of digits generated. Then

Eτ =
∑
t≥0

P(τ ≥ t) (2.2)

=
∑
t≥0

# words of length t avoiding w

2t
(2.3)

≈
∑
t≥0

cw

(
λw
2

)t

(2.4)

= cw
1

1− λw/2
. (2.5)

Observe that this looks like it’s increasing in λ (ignoring the constant c – it’s just a heuristic,
after all!) This suggests that the expected hitting time is measuring the same thing as the entropy.
The hitting time is roughly exponentially distributed, i.e.

lim
n→∞

−1

n
logP(τ > t) = log(q−1λ), (2.6)

(this is just re-wording the definition of entropy), but understanding how close τ is to being
exactly exponentially distributed with parameter λ is the real challenge.

It turns out that this heuristic is correct for the full shift. First a definition:

Definition 2.3. Given a word w of length l, its overlap set O is the set

O = {i ∈ [l] : w1w2 · · ·wi = wl−i+1wl−i+2 · · ·wl} (2.7)
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and its correlation polynomial is the polynomial function

ϕ(x) =
∑

i∈O(w)

xi. (2.8)

A folklore probability result is:

Fact 2.4. Eτw = ϕw(q)

See section 2.9 for a proof (and a general martingale method for computing with these hitting
times). Now the punch line:

Theorem 2.5. For two words w,w′, ϕw(q) ≤ ϕw′(q) ⇐⇒ λw ≤ λw′.

This is originally due to Guibas and Odlyzdko (1980). We give an alternate proof:

Proof. For any word w, let τw denote the hitting time of w in an iid sequence uniform over [q]. From
the martingale argument in Section 2.9, we will use the explicit formula 2.129 for the generating
function f(z) =

∑
t≥1 z

tP(τ ≥ t), namely

f(z) =
zϕw(qz

−1)

1− (z − 1)ϕw(qz−1)
. (2.9)

(This can probably be proved via the formulas and methods of GO, but the martingale derivation
is much more elegant, and doesn’t require any futzing around with recursions.) By 2.6, f(z)
has radius of convergence exactly qλ−1. Comparing with the explicit formula above, we see that
λ = qr−1, where r is the smallest positive root of the polynomial 1− (z − 1)ϕw(qz

−1).
Observe that since q ≥ 2, ϕw(q) ≥ ϕw′(q) exactly when ϕw ≺lex ϕw′ , where A ≺lex B for

polynomials A(α) =
∑m

j=1 ajα
j and B(α) =

∑m
j=1 bjα

j with {0, 1} coefficients means

aj = bj , j ∈ {m,m− 1, . . . , k + 1} and ak = 0, bk = 1 for some k ≥ 1. (2.10)

Combining these observations, making the change of variables α = r−1 and doing some algebra,
the theorem reduces to showing the following:

Claim 2.6. Fix q ∈ [2,∞). Let A be any polynomial with {0, 1} coefficients and zero constant
term. The equation

A(α) =
α

q − α
(2.11)

has a unique root α∗(A) ∈ (1, q). If A ≺lex B are two such polynomials, α∗(A) < α∗(B).

The result follows from the claim by taking A = ϕw and B = ϕw′ . The proof that the root is
unique is tedious but easy, I postpone it for later. Then we have

α∗(A) < α∗(B) ⇐⇒ A(α∗(A)) < B(α∗(A)). (2.12)

This relies on the fact that α∗
B is the unique solution to (2.11) with polynomial B, and

limα→q−
α

q−α = +∞, which together imply B(α) > α
q−α for α ∈ (1, α∗

B) and B(α) < α
q−α for

α ∈ (α∗
B, q). Set α

∗(A) = u. By the assumption A ≺lex B, for some k ≤ deg(A) we have

B(u)−A(u) ≥ uk −
∑

1≤j<k

uj . (2.13)
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Letting ck denote the largest root of the polynomial xk −
∑

1≤j<k x
j , the difference above is

positive if u ≥ ck, i.e. if

ck
q − ck

≤ A(ck), (2.14)

(note that this again relies on the uniqueness of the solution α∗
A). Finally, this inequality follows

directly from the assumption q ≥ 2 and the fact that k ≤ deg(A):

ck
q − ck

≤ ck
2− ck

= ckk ≤ A(ck), (2.15)

where the equality uses the definition of ck.

Here’s a proof sketch for the uniqueness of the solution α∗, I’ll write down the important ideas
and fill in the precise details later. It feels a bit convoluted but I couldn’t find a better way. The
idea is to do an induction over the derivatives of the function h(x) = (q − x)A(x)− x. Let A have
degree k. Easy computations show that: for j ≥ 2, hj(x) = −(j − 1)f j−1(x) + (q− x)f j(x) (where
superscript denotes the jth derivative); hj(q) < 0 for all j; hk(x) < 0 for all x; and a slightly tricky
computation shows that there is an integer j∗ ∈ {1, 2, . . . , k} such that hj(1) > 0 for i ≤ j∗, and
hj(1) < 0 for i > j∗. Then the induction step is: if f is a polynomial such that f ′(1) < 0 and f ′ has
no roots in (1, q), then f has no roots in (1, q) (this is obvious); and if the same assumptions hold
except for f(1) is nonnegative instead of negative, and f(q) < 0, then f must have at most one
zero (again, obvious); and if f ′(1) > 0, f ′(q) < 0, f ′ has a unique zero in (1, q) and f(1) > 0, then
f has a unique zero in (1, q) (again, obvious, nothing to prove). Putting all this together, we ‘ride
the induction chain’ up from the kth derivative to the function h; at index j∗ point the induction
‘flips’ from the first case to the second, and then the second to the third.

The only tricky fact in this whole business is showing that the j∗ exists, but it just boils down
to a relatively simple bound, I think. The exact expression is∑

O∋n≥i

(n)i−1((q − 1)(n− i+ 1)− (i− 1))− (i− 1)(i− 1)!1{i− 1 ∈ O}. (2.16)

We want to show that as i increases from 1 to k, this expression is > 0 and then < 0. The key
point is that the whole thing is dominated by the term n = k, whatever sign it has will determine
the sign of the whole expression, and when that term is 0 (it can happen), then it won’t matter
which sign the expression has, because that will be the ‘switch’ point j∗.
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2.2 Follower set representation

In this section we study a specific graph construction for one dimensional SFTs with a single
forbidden word, which allows easy comparisons between different such shift spaces.

Definition 2.7. Fix q ∈ {2, 3, . . .} and w ∈ [q]k, w = w1w2 · · ·wk. Let Lw denote the follower
set graph with vertex set {∅, w1, w1w2, . . . , w1 · · ·wk−1}, the set of prefixes of w (which we identify
with {0, 1, . . . , k − 1} in the obvious way), and for each i ≤ k − 1 and a ∈ [q] except for i = k − 1
and a = wk, the labeled directed edge i→ di(a)

di(a) = max{j : w1w2 · · ·wj = wi−j+2wi−j+3 · · ·wia}, (2.17)

which is assigned label a. When q = 2 we use the shorthand di = di(1− wi+1).

Infinite paths in the graph Lw are in bijection with the shift space where the word w is forbidden.
The connection is the following: imagine a one-sided infinite word x = (. . . , x−2, x−1, x0) ∈ [q]N

that we modify one step at a time by adding a new letter on the right. The states of L correspond
to the maximal frontier of x that agrees with a prefix of w, and the edges of L correspond to
appending that edge’s label to x to obtain x′ = (. . . , x−1, x0, a) for some a ∈ [q]. Although there
are infinitely many graphs that realize the same correspondence, we use this construction because
it has many nice properties, including the following.

Proposition 2.8. Fix w ∈ [q]k and let di be as in Definition 2.7. Then we have:

a. All states i ≤ k − 2 have out-degree q, and state k − 1 has out-degree q − 1.

b. All incoming edges to state i > 0 have label wi, while incoming edges to state i = 0 can have
any label except w1.

c. di(a) ≤ i for all i ∈ {0, 1, . . . , k − 1} and a ̸= wi+1, and di(wi+1) = i+ 1.

d. i− di(a) = i′ − di′(a
′) only if at least one of the following three conditions holds: i = i′; one

of di(a), di′(a) = 0; or a = wi+1, a
′ = wi′+1.

Proof. Parts a and b are clear from the definition. For b, it follows immediately from the definition
that di+1(a) ≤ i+ 1 for all a, and if a ̸= wi+1, di+1(a) = i+ 1 is impossible by part b. For part d,
write di = di(a) and di′(a

′) for short, and suppose for the sake of contradiction that i−di = i′−di′
for some i ̸= i′ with i, i′ ≥ 1. Then also di ̸= di′ by re-arranging, so assume WLOG di > di′ . If
a = wi+1, then by part c, a′ = wi′+1, and similarly with the roles of a and a′ reversed, so assume
a ̸= wi+1 and a′ ̸= wi′+1. Unraveling the definition of di gives

wi−di+j+1 = wj for j = 1, 2, . . . , di − 1, and wi+1 ̸= wdi . (2.18)

If di′ ̸= 0, and thus also di ̸= 0 by assumption, setting j = di′ gives

wdi′ = wi−di+di′+1 = wi′−di′+di′+1 = wi′+1, (2.19)

contradicting the last part of Equation 2.18 for i′.
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The properties in Proposition 2.8 are not sufficient to characterize the set of graphs that arise
as Lw for some word w and integer alphabet size q ≥ 2: we do not know such a set of sufficient
conditions.

We now give a few applications of proposition 2.8, starting with a characterization of which of
the Lw graphs are irreducible.

Proposition 2.9. Except for the special cases q = 2 and w ∈
⋃

k≥1{10k−1, 1k−10, 01k−1, 0k−11},
the graph Lw is irreducible.

Proof. We start with the easier case q ≥ 3. Since the graph Lw always has the path 0 → 1 → · · · →
k− 1, it suffices to show that for each i > 0, di(a) < i for some letter a ∈ [q]. Proposition 2.8 parts
a and c together imply that there is exactly one edge i → i + 1 and at most one edge i → i, and
thus at least one edge i→ di(a) < i.

So assume q = 2, and assume that there is no path k − 1 → 0 in Lw: we will show that w
must be one of the exceptional words. For this to occur, there must be some i ∈ {1, 2, . . . , k − 1}
such that dj ≥ i for all j = i, i + 1, . . . , k − 1 – otherwise, it would be possible to escape the set
{i, i+1, . . . , k− 1} for every i, and thus to reach 0 from k− 1. Pick the largest such i. If i = k− 1,
then dk−1 = k − 1, and unraveling the definition of dk−1 gives w1 = w2 = · · · = wk−1 = wk (where
a = 1− a), i.e. w = 1k−10 or 0k−11.

So suppose i < k − 1. By part d of Proposition 2.8, since i > 0, the values j − dj must all be
distinct for j ∈ {i, i+ 1, . . . , k − 1}. So j − dj ∈ {0, 1, . . . , k − 1− j} for j = i, i+ 1, . . . , k − 1; and
since there are exactly k − i − 1 many j, each such value occurs exactly once. Since dj ≤ j, we
must have di = i, and by induction over j, dj = i for all j ∈ {i, i + 1, . . . , k − 1}. Unraveling the
definition of dj , we obtain that for j ∈ {i, i+ 1, . . . , k − 1},

wm = wj+1−i+m for m ∈ {1, . . . , i− 1}, and also wi = wj+1. (2.20)

In particular, if i > 1 (so the first case above is non-empty), taking j = i or i+1 and m = i− 1
immediately gives the contradiction wi−1 = wi = wi+1 and wi = wi+1. Thus i = 1 and w1 = w2 =
w3 = · · · = wk, i.e. w = 10k−1 or 01k−1, as desired.

When q = 2, the graph Lw, viewed as a vertex-labeled (but not edge-labeled) graph on
{0, 1, . . . , k−1}, is enough information to determine the word w, up to permutations of the alphabet
(i.e. bit flipping, for the binary alphabet):

Fact 2.10. Let w ∈ {0, 1}k. Then for each i ∈ {1, . . . , k},

wi =

{
w1, if di−1 = 0

wdi−1
, otherwise

Let W denote the family of equivalence classes of words in {0, 1}k up to bit flip, i.e. w ∼ w′ if
w = w′. Also, let L̂ denote the family of labeled directed graphs we obtain from the Lw’s, i.e.

L̂ = {Lw : w ∈ W}, (2.21)

where the graphs Lw have vertex labels {0, 1, . . . , k−1} corresponding to the frontier representation
given by w. It turns out that even if we forget about the vertex labels, no two of the graphs L̂, L̂′ ∈ L
are isomorphic as graphs. Write L for the same family of graphs as in L̂, but viewed as unlabeled
directed graphs, and for L̂ ∈ L̂, let L denote the same graph but with labels removed.
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Proposition 2.11. |L| = |L̂|, i.e. for any L̂, L̂′ ∈ L̂, L and L′ are not isomorphic.

Proof. Suppose φ : L̂ → L̂′ is an isomorphism of the underlying unlabeled graphs, viewed as a
permutation on the labels [k]. Since k ∈ L̂′ is the unique state with outdegree 0, we must have
φ(k) = k. Assume by induction that φ(i) = i for i = k, k−1, . . . , j. By Proposition 2.8 part c, each
incoming edge to state j ∈ L̂′ has its other end at some state m ≥ j, except one edge j−1 → j ∈ L̂.
Since φ(j − 1) must be a state that has an edge φ(j − 1) → j ∈ L̂′, and the other values m ≥ j are
already taken, we must have φ(j − 1) = j − 1.

The follower set graph Lw also admits a connection between entropy and hitting time, which
is a strengthening of the result of GO under an additional assumption. To explain the connection,
we make a short excursion into discrete probability.

Definition 2.12. For a word w ∈ [q]k, let τw denote the hitting time random variable of w by an
iid sequence of Uniform([q]) random variables (Yi)i∈N, i.e.

τw = min{t ∈ N : YtYt+1 · · ·Yt+k−1 = w} (2.22)

.

Also recall the stochastic dominance order for random variables:

Definition 2.13. A ≺st B if P(A ≥ t) ≤ P(B ≥ t) for all t, or equivalently, if there is a coupling
of A and B on the same probability space such that A ≤ B.

It follows easily from the results of GO that h(Xw) ≥ h(Xw′
) if and only if τw ≺st τw′ . In

Propositions 2.14 and 2.16 we prove the same result under a natural assumption on the edges di:

Theorem 2.14. Let w,w′ ∈ [q]k be any words with follower set graphs L = Lw, L
′ = Lw′ given by

edges di, d
′
i, and assume that for all i there exists a permutation πi of [q] such that di(πi(a)) ≤ d′i(a)

for all a. Then τw ≻st τw′. Additionally, if for some i and a we have di(a) < d′i(πi(a)), then τw
and τw′ are not equal in distribution.

For example, in the binary alphabet case q = 2, the assumption on the di is equivalent to di ≤ d′i
for all i.

Proof. Consider the markov chain on the graph Gw = Lw ∪ {k} where the (directed) edges have
transition probabilities 1/2, and the extra state k is added at the end of Lw, i.e. there is an edge
k − 1 → k corresponding to hitting the word w. (For completeness one can add outgoing edges
from state k corresponding to appending any digit to w, so Gw is an edge shift representation for
the full shift, and this markov chain is the maximum entropy such chain.) Let X,X ′ denote the
random walk trajectories on the graphs Gw, Gw′ respectively, stopped on hitting state k, and by a
slight abuse of notation, let τ and τ ′ denote the first hitting times of state k started from state 0
in each chain respectively.

To couple the pairs (X, τ) and (X ′, τ ′), generate X ′ at random along with an iid sequence (Yi)
of Uniform([q]) random variables, then build X from X ′ and the Yi in the following way. Given
τ ′ = t′ and X ′ = (0 = x′0, x

′
1, . . . , x

′
t′ = k), set X0 = x′0 = 0 and σ0 = 0, and for s ≥ 1 recursively

define (Xs, σs) by

(Xs+1, σs+1) =


(Xs + 1, σs + 1) if Xs = x′σs

and x′σs+1 = x′σs
+ 1

(dXs(πXs (a))
, σs + 1) if Xs = x′σs

and x′σs+1 = d′x′
σs
(a)

(dXs(a), σs) if Xs ̸= x′σs
and Ys = a

(2.23)
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In words, when X and X ′ are at the same level, they move together (after translating by the
permutation π), and when they are at different levels, X moves independently while X ′ remains
frozen. The (random) counter σs is the number of steps taken by X ′ when X has taken s steps.
By induction, using the assumption di(πi(a)) ≤ d′i(a) for all i, and because the only simple path in
both graphs from i → j with i < j is the path i → i+ 1 → · · · → j − 1 → j, for all s ≥ 0 we have
Xs ≤ x′σs

and σs ≤ s. Stop the X process at time τ = inf{s : σs = t′}. It follows immediately from
the construction that X has the distribution of simple random walk on Gw, and τ , the first hitting
time by X of state k, has the distribution of τw. Since σs ≤ s for all s, τ ≤ τ ′ under this coupling.
Additionally, τ < τ ′ if Xs < x′σs

for some s < τ , and the latter occurs with positive probability if
di(πi(a)) < d′i(a) for some a and i.

Theorem 2.14 says that the stochastic ordering of the hitting times τw can be read off from the
graphs Lw. It turns out that entropies can also be compared easily in this setting.

Proposition 2.15. Fix w ∈ [q]k. Let A = Aw denote the adjacency matrix of Lw, and write r = rw
for the right eigenvector of A corresponding to the top (Perron-Frobenius) eigenvalue λ = λw of A.
Then

a. det(Aw) = ±1;

b. rw has strictly decreasing entries. In particular, the entries of rw decrease at least exponen-
tially: for i = 0, . . . , k − 2,

(rw)i+1 ≤ (λ− q + 1)(rw)i. (2.24)

Proof. For part b, we proceed by induction. Assume (2.24) holds for i = 0, 1, . . . , j − 1. Then for
any a ̸= wj+1,

λrj =
∑
a∈[q]

rdj(a) (2.25)

≥ rj+1 + (q − 1)rj . (2.26)

Here the first line uses that r is a right eigenvector, and the second line follows from Proposition
2.8 part c, the induction hypothesis, and the fact that λ < q (since A has 0-1 entries and column
sums at most q). Re-arranging gives Equation 2.24 for i = j. In the base case i = 0, we have
d0(a) = 0 for all a ̸= w1 and d0(w1) = 1, so r1 = (λ− (q − 1))r0 is an equality.

The proof actually shows something a bit stronger: namely that for i = 0, 1, . . . , k − 2,

ri+1

ri
≤ λ−

∑
a∈[q]\{wi+1}

(λ− q + 1)−i+di(a). (2.27)

We can now describe the ordering of the entropies of the Lw graphs in the same context as
Theorem 2.14:

Theorem 2.16. Fix w,w′ ∈ [q]k, and let r be as in Proposition 2.15. Assume that for all i ∈
{0, 1, . . . , k − 2} ∑

a∈[q]

rdi(a) ≤
∑
a∈[q]

rd′i(a), (2.28)
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and that ∑
a∈[q]\{wi+1}

rdi(a) ≤
∑

a∈[q]\{w′
i+1}

rd′i(a). (2.29)

Then λw > λw′.

Note that by Proposition 2.15, the assumption on w,w′ in Theorem 2.14 implies the assumption
in Theorem 2.16.

Proof. Let A,A′ denote the adjacency matrices of L,L′, and write r, r′ for the right eigenvectors of
A,A′ corresponding to the top eigenvalues λ, λ′. For i = 0, 1, . . . , k − 2, by the assumption,

(A′r)i =
∑
a∈[q]

rdi(a) ≤
∑
a∈[q]

rd′i(a) = (Ar)i = λri, (2.30)

and similarly, (A′r)k−1 ≤ λrk−1. Thus A
′r ≤ λr. Take a left eigenvector ℓ′ for eigenvalue λ′ in

A′ and calculate:

λ′ℓ′ · r = ℓ′A′r ≤ λℓ′ · r. (2.31)

(Here · is the dot product.) If at least one of w and w′ are not among the exceptional words in
Lemma 2.9, then by that lemma and the Perron Frobenius theorem, either L or L′ is irreducible,
and thus either ℓ′ or r is strictly positive. Additionally, one can check directly that the assumptions
of Theorem 2.14 never hold if both L and L′ are reducible (unless q = 2 and w = w′, but in this
case the result is trivial). So ℓ′ · r > 0, and thus λ′ ≤ λ. (Annoying, still to fix, want a strict
inequality here)

Unfortunately, the relation w ≺ w′ given by di(πi(a)) ≤ d′i(a) for all i and a and some permu-
tations πi is too coarse to fully recover the GO theorem: one can check that there are words w,w′

that are incomprable under ≺, but λw ̸= λw′ . It is not even the case that for each word w whose
entropy is larger than the minimum possible entropy of all words of fixed length, there exists a
word w′ with w ≺ w′: a minimal counterexample is w = 1011. On the other hand, the word w
with maximal entropy over words of length l, namely w = 1k, is the unique minimial element of
the poset generated by ≺, i.e. 1k ≺ w′ for all w′ of length k (since all di are equal to 0 for the word
1k.)

Question 2.17. Describe the structure of the poset generated by ≺ in more detail. What are the
maximal elements? How long is a typical chain?

11



2.3 Recursions

As an example of the usefulness of the graphs Lw, we work through the necessary computation
explicitly for w = 100. Here the graph is given by d1 = d2 = 1. We are trying to solve for Ωn(100),
which can be thought of as the number of paths in the graph L100 of length n, starting at either
state 0 or state 1, that never hit state 3. To count these, write an(100) as the number of such
paths, and partition an into three further counts a0, a1, and a2, where aj is the number of such
paths ending at state j. These lead to the following system of recursions, obtained by collecting
the incoming edges to each state:

a0n = a0n−1 (2.32)

a1n = a0n−1 + a1n−1 + a2n−1 = an−1 (2.33)

a2n = a1n−1 (2.34)

There doesn’t seem to be a systematic way to solve such a system, other than plugging in
recursively repeatedly until a recursion for an appears. In this case, it doesn’t take too long:

a = a0 + a1 + a2 (2.35)

= 2a−1 − a2−1 (2.36)

= 2a−1 − a1−2 (2.37)

= 2a−1 − a−3. (2.38)

Thus an(100) = 2an−1(100)− an−3(100), which yields the asymptotic formula

an(100) ∼
(
1 +

2√
5

)
φn, φ =

1

2
(1 +

√
5). (2.39)

In general it seems easier to work with the corresponding generating functions f j100(z) =∑
n≥1 a

j
n(100)zn and f100(z) =

∑
n≥1 anz

n. These functions satisfy f(z) = f0(z) + f1(z) + f2(z)
and

f0(z) = z + zf0(z) (2.40)

f1(z) = z + z(f0(z) + f1(z) + f2(z)) (2.41)

f2(z) = z + zf1(z) (2.42)

The solution is

f0(z) =
z

1− z
, f1(z) =

z

1− 2z + z3
, f2(z) =

z2

1− 2z + z3
. (2.43)

Note that a0n = n, and asymptotically

a1n ∼

(
3 +

√
5

2
√
5

)
φn, a2n ∼ a1nφ

−1. (2.44)

The proportions of paths that end at 0, 1, 2, i.e. limn→∞
ajn
an
, are respectively 0, φ− 1, 2− φ, or

≈ 0, .618, .382.
See section 2.5 for a linear algebra approach.
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2.4 Letter densities

Computing the average density of 1’s is not as simple as the counts an(w). Let Xn denote a
uniformly random chosen element of Ωn(w). In the notation of 2.3,

P(the last digit of Xn = 1) =
1

an(w)

l−1∑
k=1

akn(w)1{the kth digit of w = 1}. (2.45)

In the example with w = 100, we computed a1n(100)
an(100)

→ φ− 1, so this is the limiting probability
of seeing a 1 in the final position. However, this isn’t the same as the density of 1’s in the whole
word, as we will see shortly. The method from 2.3 can likely be extended to compute

lim
n→∞

P(the jth digit of Xn = 1) (2.46)

for any fixed j ∈ N, by enumerating paths in the markov graph Lw ‘backwards.’ These values
should converge, as j → ∞, to the average density of 1’s in Xn, γw (defined below).

A natural quantity is the density of 1’s the string Xn. Consider the average fraction of 1’s in a
uniformly random w-avoiding string:

Definition 2.18. For a fixed word w, let γw denote the limiting fraction of bits that are 1 over all
strings in Ωn(w):

γw = lim
n→∞

1

n|Ωn(w)|
∑

ω∈Ωn(w)

#1‘s in ω. (2.47)

How can this density be computed? It seems necessary to further partition the strings Ωn(w)
into sets Ωn,k(w), i.e. strings of length n with exactly k 1’s. Let an,k(w) = |Ωn,k(w)|. As an
example, we continue with the string w = 100. The an,k(100) satisfy a recursion similar to that for
an(100), namely

an,k = an−1,k + an−1,k−1 − an−3,k−1. (2.48)

This can be proved by observing that each ω ∈ Ωn,k(100) can be built from a unique string in
Ωn−1,k(100) ∪ Ωn−1,k−1(100) by appending either a 1 or a 0, except for the ones (of length n − 1)
ending in 10, since adding a 0 would result in a 100. (There is something slightly subtle here. See
the definition of selfless words below, and proposition 2.20. 100 is a selfless string.)

Standard generating function technology yields

f(z, w) =
∑
n,k≥0

an,kz
nwk =

1

1− z(1 + w) + z3w
, (2.49)

and by extracting coefficients and taking limits, we obtain

1

n

n∑
i=1

P(Xn(i) = 1) =
1

nan(100)
[zn]

∂

∂w

∣∣∣
w=1

f(z, w) → 5 +
√
5

10
≈ .7236. (2.50)

(As expected, the density of 1’s increases as a result of conditioning on avoiding 100.) (Another
aside: Mathematica is a bit tempermental about evaluating these kinds of expressions. It seems to
be happiest when the derivative in w is evaluated first, then the coefficient of zn is extracted.) A
variance calculation can be performed too:
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Var(number of 1’s in Xn) ∼
1

5
√
5
n. (2.51)

A WLLN follows for the number of 1s, since the variance is o(n2). (Note that the number
of copies of any string w is asymptotically normal by the k-dependent CLT.)

Finding these recursions is sometimes very straighforward. In fact, a large class of words w
share common recurrences.

Definition 2.19. Call a word w selfless if no prefix of w matches any suffix of w, i.e. if there
exists no j < l such that w1w2 · · ·wj = wl−j+1wl−j+2 · · ·wl−1wl, where w has length l.

The word w = 100 is selfless, and it shares the recurrence above with all other selfless words of
length 3 with a single 1, via the same construction.

Proposition 2.20. Let w be a selfless word of length l containing exactly j 1’s. Then

an,k(w) = an−1,k(w) + an−1,k−1(w)− an−l,k−j(w). (2.52)

Proof. To generate an arbitrary string in Ωn,k(w), we can start with an arbitrary string of length
n− 1 and append a 0 or a 1. This overcounts things slightly, since adding this final digit may have
created an instance of w. So we need to throw away all strings of length n− 1 ending with the first
l − 1 digits of w. To complete the proof, it suffices to note the following lemma:

Lemma 2.21. w is selfless if and only if the map from the set of strings in Ωn−1,k(w) ending in
the first l − 1 digits of w to Ωn−l,k−j that chops off the last l − 1 digits is a bijection.

Since an(w) =
∑n

k=0 an,k(w), and the ‘base case’ values an,k =
(
n
k

)
for n < l or n = l, k ̸= j and

al,j =
(
l
j

)
− 1 only depend on l and j, we get a large family of stastical coincidences:

Proposition 2.22. Fix l. If w and w′ are any two selfless words of length l, then an,k(w) = an,k(w
′)

and an(w) = anw
′ for all n and k. In particular, λw = gw′, and if w and w′ have the same number

of 1’s, then γw = γw′. The common recursion is

an(w) = 2an−1(w)− an−l(w), (2.53)

and λw is the unique solution z ∈ (1, 2) to zl−1 = 1 + z + z2 + · · ·+ zl−2.

Note that, in contarast to the previous proposition, we don’t require that w and w′ have the
same number of 1’s. The only difference is in the base case n = l. Solving the recurrence in
Proposition 2.20 yields the generating function∑

n,k≥0

an,k(w)z
nwk =

1

1− z(1 + w) + zlwj
, (2.54)

where l is the length of w and j is the number of 1’s.
Note that a word w is selfless exactly when ϕw(t) = tl. Theorem 2.5 says that the entropy is

constant over all words with common correlation polynomial, not just the selfless ones.
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Question 2.23. Is there a similar theorem for letter densities? For example, one could look at a
statistic like

ψw(t) =
∑

i∈O(w)

(#{1’s in the length i self-overlap of w})ti, (2.55)

and hope that letter densities are ordered in the same way as these values. I think it is probably
false in general that

ψw(2) ≤ ψw′(2) ⇐⇒ γw ≥ γw′ , (2.56)

but maybe something like it is true.

Definition 2.24. Call a word w balanced if the number of 1’s in w is half the length of w.

Recall an(w) = |Ωn(w)|, the number of strings of length n avoiding w, and an,k(w) is the number
of those with exactly k 1s. We have:

Proposition 2.25. If w is selfless and balanced, then γw = 1/2. In fact, for all n, the average
density of 1’s in a uniform random string avoiding w is exactly 1/2, i.e.

n∑
k=0

kan,k(w) =
1

2
nan(w). (2.57)

Proof. It would be nice to have a bijective proof. The above can be checked directly using the
generating function formula 2.54. wetting

f(z, w) =
∑
n,k≥0

an,k(w)z
nwk =

1

1− z(1 + w) + zlwl/2
, (2.58)

and a quick computation shows

∂

∂w

∣∣∣∣
w=1

f =
1

2
zg′(z) (2.59)

which is equivalent to the claim.

Also note: the family of selfless words is quite large! The probability of a word being selfless
is bounded away from 0 for any n (perhaps an interesting computation of its own?), so a constant
proportion of words are selfless. (Simulation suggests the probability of being selfless is approxi-
mately .266 for n large. The ‘mean field’ calculation – i.e. assuming matching each suffix to each
prefix are independent events – gives an estimate of

∏
j≥1 1− 2−j ≈ .289.) There is a recursion

for selfless words which can be solved to some extent. There’s an OEIS entry, for
example.

There is another class of words for which the density can be easily seen to be exactly 1/2. Recall
that Rev(w) is the reversal of w, and w1w2 · · ·wl = w1 w2 · · · wl, where s = 1−s is the ‘bit flipping’
operation. Note that these two operations are commuting involutions, i.e. Rev(w) = Rev(w) and
w = Rev(Rev(w)) = w.

Definition 2.26. Call a word w sweet if w = Rev(w).

Note that sweet words must be balanced, so all sweet words have even length. Conditioning on
avoiding a sweet word keeps the 0-1 count balanced:
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Proposition 2.27. If w is a sweet word, then γw = 1/2. In fact, for all n, the average density of
1’s in a uniform random string avoiding w is exactly 1/2, i.e.

n∑
k=0

kan,k(w) =
1

2
nan(w). (2.60)

Proof. It suffices to find a bijection ω 7→ ω′ from Ωn(w) to itself such that the number of 0’s in ω′

is equal to the number of 1’s in ω. Indeed, the existence of such a bijection implies that the total
number of 1’s over all strings in Ωn(w) is the same as the total number of 0’s, which implies the
result. The bijection that works has the simple formula ω 7→ Rev ◦ ω. This map is an involution
that swaps 0’s and 1’s, and that w is sweet implies that it maps Ωn(w) to itself.

It is worth noting that the number of sweet strings words exponentially, but still makes up a
vanishing fraction of all words. Indeed, the sweet words of length l can be exactly enumerated
by choosing an arbitrary word ω of length l/2, then forming the word ω ⊕ Rev(ω), where ⊕ is
concatenation. So there are exactly 2l/2 sweet words of length l.

Being balanced is not enough to guarantee that the conditioned string is balanced. Already
there is a counterexample when l = 4. Note that of the 6 words of length 4 with two 1’s, up to
reversal and bit-flipping only one is not sweet: 1010 and 1100 are sweet, while 1001 is not. And we
have:

Fact 2.28. The limiting density of 1’s in a uniform random 1001 avoiding string is

γ1001 =

2
(
−3 + 2

√
5
)5/2√ 1

55

(
3 + 2

√
5
)(

110
√
−3 + 2

√
5 + 44

√
5
(
−3 + 2

√
5
)
+
√
11
(
35 + 17

√
5
))

11
(
−35 + 27

√
5
) (√

11 + 3
√

−3 + 2
√
5
)

(2.61)

≈ .494161. (2.62)

Amazingly, conditioning on avoiding 1001 very slightly decreases the density of 1s!

This ostentatious constant comes from computing with generating functions exactly. (See
section 2.5 for a nicer calculation.) Via the graph L, one finds recursions (where all an are
interpreted as an(1001) for ease of notation)

an = 2an−1 − an−3 + an−4 ∼
(27

√
5− 35)(

√
11 + 3

√
2
√
5− 3)

20(2
√
5− 3)5/2

√
3 + 2

√
5

1

2n
(1 +

√
3 + 2

√
5)n, (2.63)

and

an,k = an−1,k + an−1,k−1 − an−3,k−1 + an−4,k−1, (2.64)

which satisfies

∑
n,k≥0

an,kz
nwk =

1 + z3w

1− z(1 + w) + z3w − z4w
. (2.65)

Note also that 1001 is not selfless – the recursion for an,k requires additional ‘correction’ terms.
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Conjecture 2.29. The density of 1’s γw in a uniform random element of Ωn(w) is 1/2 if and only
if w is sweet or balanced and selfless and satisfies ...

Simulation found counterexamples of length 8 to just being sweet/balanced, namely 10011010
and 10100110.

Conjecture 2.30. γw = 1/2 only if w is balanced.

This has been confirmed by (approximate) simulations up to words w of length 20.

Conjecture 2.31. γw > 1/2 if and only if w has at least as many 1’s as 0’s.

Question 2.32. Classify the set of balanced strings w with γw < 1/2.

Conjecture 2.33. For all l and all strings w of length l, |γw − 1/2| ≤ C exp(−cl). If this holds,
what is the optimal rate c?
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2.5 Letter densities via the MME for SFT

Let ν denote the measure of maximal entropy for the shift of finite type with single forbidden word
w. This measure can be computed explicitly via some matrix computations with the graph Lw,
and gives an alternate way to calculate the entropy λw and the letter density γw. Namely:

Fact 2.34. λw is the (exponential of the) topological entropy of ν, and γw is ν(C0), the measure of
the cylinder set of 0 under ν.

These values can be computed exactly from any representation of the corresponding SFT. λw
is the largest eigenvalue of any graph representation of the corresponding SFT: Lw is the ‘minimal’
such representation. As for γw, recalling the graph L, and using (by a slight abuse of notation) ν
to refer also to the stationary MME – the ‘parry measure’ – on the graph L, we have:

Proposition 2.35. Let w = w1w2 . . . wl with w1 = 1. Then

γw =
∑

k<l:wk=1

ν(k).

Also, the characteristic polynomial of Lw matches the recursion satisfied by |Ωn|:

Proposition 2.36. Let Aw denote the adjacency matrix of Lw, and let pw(λ) denote its charac-
teristic polynomial, say pw(λ) =

∑l
i=0 ciλ

i. Then an = |Ωn| satisfies

c0an =

l∑
i=1

cian−i.

Example 2.37. To illustrate, we recover the example w = 100 via this method. The graph L100

has adjacency matrix 1 1 0
0 1 1
0 1 0


with characteristic polynomial λ3 − 2λ2 + 1 = (λ − 1)(λ2 − λ − 1), top eigenvalue φ = 1+

√
5

2 ,
and right/left eigenvectors

r100 =

 1
φ− 1

1− φ−1

 ℓ100 = [0 1 φ−1
]
.

The the parry measure is given by νj =
1

Z100
rjℓj , j = 0, 1, 2, with Z100 = r · ℓ. We have

ν =
1

3φ− 4
(0, φ− 1, 2φ− 3),

and the density of 1s is γ100 = ν(1) = φ−1
3φ−4 = 5+

√
5

10 , since the state where we match the first
digit is the only state ending in a 1. This matches the calculation from the previous section.

For completeness we also carry out the analysis this way for:
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Example 2.38. Let w = 1001, which has L1001 with adjacency matrix
1 1 0 0
0 1 1 0
0 1 0 1
1 0 0 0

 ,
(irreducible over Q) characteristic polynomial λ4 − 2λ3 + λ − 1, top eigenvalue λ ≈ 1.866760,

and right/left eigenvectors

r1001 =


1

λ− 1
(λ− 1)2

λ−1

 ℓ1001 = [1 λ2(λ− 1) λ(λ− 1) λ− 1
]
.

Thus the parry measure is

ν =
1

−2λ3 + 6λ2 − 3λ+ 3
(1, λ2(λ− 1)2, λ(λ− 1)3, 1− λ−1),

and γ1001 = ν(1) = λ2(λ−1)2

−2λ3+6λ2−3λ+3
.

These exact rational functions for the eigenvectors had to be obtained by hand – so far I don’t
know a systematic way of determining the exact rational expressions in terms of the top eigenvalue
λ.

Question 2.39. Write a computer program that finds an expression for the Perron eigenvectors
as polynomials in the entropy λ.

We continue with some general computations:

Example 2.40. Consider w = 111 · · · 1, a string of l 1s. The graph L11···1 has adjacency matrix
1 1 0 · · ·
1 0 1 0 · · ·
1 0 0 1 0 · · ·
...

...
...

...
1 0 · · · · · · · · · 0


The characteristic polynomial is λn − λn−1 − · · · − λ− 1, with right/left eigenvectors

rj =

n−j+1∑
i=1

λ−i, ℓj = λ1−j , j ∈ [n].

The density of 1s is γ11···1 = 1− ν(0) = λn(λ− 1)2[λn+1 − λ(n+ 1) + n]−1.
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2.6 Autocorrelation and spectrum

There is a somewhat explicit way to go between the autocorrelation polynomial ϕw and the spectrum
of the graph Lw: namely, letting A denote the adjacency matrix of Lw, by a result of Doug Lind,

det(A− tI) = (1− qt−1)ϕw(t) + 1. (2.66)

The left hand side can be expressed in the usual way, as a polynomial in the eigenvalues of A
(here w is a word of length k over alphabet [q]):

det(A− tI) =
∏

λ∈sp(A)

t− λ =
∑
j

(−1)k−jtj det(A)
∑
|S|=j

∏
λ∈S

λ−1. (2.67)

Here S ranges over all j element subsets of the spectrum. On the other hand, the right hand
side captures the self-overlaps of w. Let rj denote the coefficients of ϕw, i.e. rj is 1 if w has a
self-overlap of length j, and 0 otherwise, so ϕw(t) =

∑
j rjt

j . Note in particular that when t = 0
we obtain

det(A) = −qϕw(0) + 1 = 1− q · r1. (2.68)

Generally, for j = 1, 2, . . . , k, taking jth derivatives of both expressions with respect to t, then
setting t = 0 yields

(−1)k−j det(A)
∑
|S|=j

∏
λ∈S

λ−1 = rj − qrj+1, (2.69)

where we interpret rk+1 = 0. Thus for every j = 1, 2, . . . , k,∑
|S|=j

∏
λ∈S

λ−1 = (−1)j−k rj − qrj+1

1− qr1
. (2.70)

Question 2.41. Can this system be massaged to yield more information about how the eigenvalues
determine the polynomial ϕw or vice versa?

If w is selected uniformly at random, the autocorrelation coefficients Rj , the indicator that w
has a self-overlap of length j, are not independent, but they might be approximately so in some
sense. Rj is simply Bernoulli with parameter 2−j . The Rj might decorrelate in some sense for long
words w. Can this be made precise? What kind of limit theorems could we try to establish for the
Rj ’s?

Question 2.42. Let Rj denote the autocorrelation variables of a uniformly chosen binary word w
of length n. Can we describe a joint limit law for the sequence (Rj)j∈[n]? Or, even partial results
in this direction, like decay of correlations, or some kind of stationarity, as long as you zoom in on
Rj for j ≤ 1

4n or something like this?
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2.7 Word counts

Rather than jumping straight to the SFT by forbidding a word w, it is natural (and possibly
helpful) to study the substring counts Nw(x) = # of copies of w appearing in x ∈ {0, 1}n. Observe
that for iid Ber(1/2) bits, as n→ ∞, 1

nENw ≈ 2−l. We can also compute the covariance directly:

Proposition 2.43. Let v, w be any words of lengths k and l, respectively. Then

Cov(Nv, Nw) = (Φ(v, w)− 2−k−l(k + l − 1))n+O(1), (2.71)

where Φ(v, w) is the symmetric overlap polynomial

Φ(v, w) =
∑

x∈O(v,w)

2−len(x), (2.72)

where O(v, w) is the set of all minimal words where v and w both occur exactly once and share
at least one letter (and minimal means that no subword has this property).

For example, if w = 101 and v = 11, there are two overlaps, namely 1101 and 1011, each of
which have length 4, so

Φ(101, 11) = 2−4 + 2−4 = 2−3. (2.73)

Plugging in shows Cov(N101, N11) = O(1). A similar example is our favorite word w = 1001.
We have Φ(1001, 1) = 2 · 2−4, so 1

n Cov(N1001, N1) → 1
n(2

−3 − 2−5 · 4)n + O(n−1) = 0 (!) This
heuristically hints that γ1001 is close to 1/2, but fails to capture the fact that γ1001 ̸= 1/2. This
makes sense: the covariance calculation doesn’t live in the SFT, which has exponentially small
measure, but in the complement, which has full measure.

Corollary 2.44. Cov(Nw, N1) = 2−l(#1s in w − 2l). In particular, Cov(Nw, N1) = 0 if and only
if w is balanced.

Question 2.45. Are there any pairs v, w such that Nw and Nv are asymptotically independent?

Note the special case

Φ(w,w) = 2ϕw(2
−1)− 2−l. (2.74)

since each overlap of w with itself occurs twice in O(w,w), and we subtract the full overlap
to fix the over counting, and where ϕ is the usual self-overlap polynomial defined in 2.3. So as a
corollary we get

Corollary 2.46. For any w of length l,

1

n
Var(Nw) ∼ 2ϕw(2

−1)− 2−l − (2l − 1)2−2l. (2.75)

Question 2.47. Observe that the variance is increasing in ϕw(2
−1): does this have any significance?

Can it be proved without the explicit calculation?

It is also possible to write an explicit formula for the distribution of Nw, via a matrix calculation.
Let X be any SFT where w is an allowable word, and let P be the {0, 1} valued matrix with 0s
at the transitions forbidden by X. Construct matrix Q identical to P , except that we replace any
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transition Pij = 1 which ‘creates’ a copy of w by a variable y. For example, when X is the shift
where 11 is forbidden and w = 1, we use

Q =

[
1 1
y 0

]
(2.76)

(Here the states are simply {0, 1}, since the parry measure on the golden mean shift is a markov
chain with memory 1.) The number of words of length n containing exactly k copies of w is given
by

[yk]
∑
i,j

(Qn)ij . (2.77)

In the golden mean example, Q has eigenvalues

λ± =
1

2

(
1±

√
1 + 4y

)
, (2.78)

and one easily diagonalizes:

Q = ADA−1, where A =

[
1 1

λ+ − 1 λ− − 1

]
, D = diag(λ+, λ−). (2.79)

Some algebra yields that the number of words of length n containing exactly k 1s is

[yk]
1√

1 + 4y

(
λn+(1 + y) + λn−(y − λ−)

)
, (2.80)

which can be unraveled to get explicit formulas. Computing the joint distribution of (Nw, Nv)
for a pair of strings w, v is already a challenge. A similar tool works to get explicit formulas: for
example, to count w = 1 and v = 11 over the full shift (no forbidden words), one would use the
matrix [

1 y
y yz

]
(2.81)

with y counting the occurrences of w and z counting the occurrences of v. One could follow
the same procedure – diagonalize, then extract coefficients – to obtain some explicit formulas for
the Nw and Nv counts. It’s not clear how useful this is. Maybe an appeal to generating
function technology can give us a CLT, even a joint CLT?
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2.8 Gibbs measures

There is a natural Gibbs measure that interpolates between iid bits and the SFT obtained by
forbidding w: namely, fix β > 0, and weight occurrences of w by β. Generally, for any set of words
F , and for any (fixed) n ∈ N we have a measure on the set of strings of length n given by

µnF ,β(x) = Z−1
w,β exp(

∑
w∈F

βwNw), (2.82)

where Nw(x) is the number of occurrences of w in x ∈ {0, 1}n and β ∈ RF . Write µnw,β for the
measure where F = {w} consists of a single word. First we note that there is a limit in n:

Theorem 2.48 (Thermodynamic limit). For any β ∈ RF , there exists a probability measure µF ,β

on {0, 1}Z that is the thermodynamic limit of the µn. The limit is the same if we consider µn with
or without periodic boundary. Additionally, the pressure functions pn(β) = 1

n logZn(β) converge to
an analytic (?) function p(β).

It remains to be seen if we can include β = +∞ in this statement – probably β = −∞ is fine.
The former corresponds to the SFT where some subset of F is forbidden, and the latter should be
an atomic measure, where we pack words w with βw = ∞ as tightly as possible, though this isn’t
as clear.

Proof. The correct approach should be via ‘transfer matrix,’ i.e. form the finite matrix A(β) with
entries 0, 1 or eβw corresponding to transitions which create a copy of w. Then p(β) is the log of the
Perron Frobenius eigenvalue of A(β), and µ is determined by the Parry chain associated to A(β),
namely for any cylinder C(x) for x ∈ {0, 1}[0,n)∩Z, µ(C(x)) = λ−nl(x0)r(xn−1), where l and r are
the left and right eigenvectors of A(β) and λ is its PF eigenvalue, all of which depend on β.

Question 2.49. Do we get any properties of p for free, e.g. convexity?

Let Ew,β denote the expectation under µw,β. Looking at observables Nv = 1{x0x1 · · ·xr = v}
for another fixed word v under the measure µw,β leads to some interesting questions. For example,
Ew,β[N1] is the letter density of 1s in a typical µw,β sample: if we could show that

∂

∂β
Ew,β[N1] < 0 for β < 0, (2.83)

this would imply that γw < 1/2 (density of 1s for the SFT forbidding w) by integrating over
β < 0. This appears to be true for w = 1001, for example.

For many pairs w and v, Ew,β[Nv] is either globally minimized or maximized at β = 0, but this
appears to not always be the case.

Question 2.50. Are Ew,β[Nv] and Ev,β[Nw] related in a canonical way?

In general, the derivative has the following nice form:

Proposition 2.51. Let f be any function on {0, 1}n. Then

∂Ew,β[f ]

∂β
= Covw,β(Nw, f). (2.84)

23



Proof. Note that Zw,β = Z =
∑

x exp(βNw), so

∂Z

∂β
= ZE[Nw]. (2.85)

Thus

∂

∂β
E[f ] = −Z−2ZE[Nw]

∑
x

f(x)µβ(x) + Z−1
∑
x

f(x)Nw(x)µβ(x) (2.86)

= E[Nw · f ]− E[Nw] · E[f ] (2.87)

= Cov(Nw, f). (2.88)

In particular:

Corollary 2.52. At β = 0, 1
∂β∂Ew,β[Nv] =

1
∂β∂Ev,β[Nw].

2.8.1 Derivatives of the pressure

Here we evaluate explicitly some derivatives of the pressure function p(β) in the general setting of
µF ,β. Let w, v ∈ F be fixed words, and denote by ∂w or ∂v the derivative with respect to βw or βv.
We conjecture the following:

Conjecture 2.53. ∂v∂wp is either identically zero or never zero for βw′ = 0, w′ ̸= w, and βw < 0.

In words, starting from iid and tuning down w either always increases or always decreases the
density of v, unless the covariance is always zero. Because of the nice form of the pressure, we can
compute these derivatives exactly in terms of some matrix products. Write ℓ(β) and r(β) for the
left and right eigenvectors of the edge shift matrix A(β) normalized so that ℓr = 1 (ℓ is a row and
r is a column), and λ(β) for its top eigenvalue. (For example, A could be the adjacency matrix of
the DeBruijn graph but with transitions that create a copy of w ∈ F replaced by eβw instead of
1.) Let U = U(β) = ℓT rT , which satisfies limn→∞ λ−nAn = U by the Perron-Frobenius theorem.
Finally, for w ∈ F , let Ew denote the 0-1 matrix with 1s in any entry where a w is created when
that edge is traversed (so for the DeBruijn graph, E is an elementary matrix, i.e. it has a single
one and the rest of its entries are zero).

Proposition 2.54. ∂wp(β) = exp(βw)λ(β)
−1Tr(UEwU) = exp(βw)λ(β)

−1ℓ(β)A(β)r(β).

Proof. There are two approaches here: one can write p(β) = limn→∞
1
n log Tr(A(β)n) and use the

chain rule to differentiate through the matrix trace to obtain the trace formula above. A more
elegant approach is to work with p(β) = log λ(β). Writing λ = ℓAr and differentiating, we get

∂w log λ(β) = λ−1∂wℓAr (2.89)

= λ−1(∂wℓAr + ℓ(∂A)r + ℓA∂wr) (2.90)

= λ−1(λ∂w(ℓr) + eβwℓEwr) (2.91)

= λ−1eβwℓEwr, (2.92)

where we used the facts that ℓA = λℓ, Ar = λr, and ℓr = 1 to get rid of the first and
third terms in the product rule, and also that ∂wA(β) = eβwEw (this is basically the definition
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of Ew). Finally, to see that this agrees with the trace formula Tr(UEwU), use the cyclic rule
for the trace, along with the fact that U is idempotent (U2 = ℓT rT ℓT rT = ℓT · 1 · rT = U), so
Tr(UEwU) = Tr(EwU

2) = Tr(EwU), which agrees with ℓEwr by direct computation.

So far we haven’t found a nice way to do the second derivative, but using the trace description
one can get a semi-explicit formula:

Proposition 2.55. ∂v∂wp = eβwλ−1
(
−eβvλ−1Tr(EwU) + Tr(Ew∂vU)

)
.

Proof. We differentiate the expression in Proposition 2.54 directly. Since λ = exp(p), we compute
∂vλ

−1 by Proposition 2.54, and for the other term, the derivative passes through since Tr is linear
and Ew is a constant matrix.

The issue now is how to get our hands on ∂vU , which somehow is not clear. It’s a rank 1 matrix
so this shouldn’t be hard. Here is a possibly useful calculation:

∂vU = lim
n
∂v(λ

−1A)n (2.93)

= lim
n

[
−nλ−n−1∂vA+ λ−n

n−1∑
k=0

Ak∂vAA
n−k−1

]
(2.94)

= λ−1eβv lim
n

[
−nℓEvrU +

n−1∑
k=0

(λ−1A)k∂vA(λ
−1A)n−k−1

]
(2.95)

= λ−1eβv lim
n,m→∞

[
−nℓEvrU + (n− 2m+ 1)UEvU +

m−1∑
k=0

UEv(λ
−1A)k +

m−1∑
k=0

(λ−1A)kEvU

]
(2.96)

= λ−1eβv (UEvY + Y EvU − UEvU) , (2.97)

where Y =
∑

k≥0(λ
−kAk − U). In the above m is something ≪ n, and we have used the fact

that ℓEvrU = UEvU , which is easily checked (and is probably a consequence of the existence of
this derivative, since otherwise the limit would blow up at order n).

Note that Y measures the rate of convergence of powers of A to the matrix U . The rate of this
convergence is controlled by the spectral gap of A. I wonder if it is possible to get an analytical
expression for Y . If one tries to follow the proof of the Perron Frobenius theorem, that λ−kAk

converges to U , it goes by putting A in Jordan form. So probably this can be carried further,
decomposing by the top two eigenspaces. But what if the second eigenvalue isn’t simple? Maybe
this is a real obstacle.

2.8.2 Generating function

Here is an attempt to calculate Ew,β[Nw] for all β. Recall that µ is a measure on {0, 1}n for fixed
(large) n. Fix w, and write

gk(β) = n−kEw,β[N
k
w], (2.98)

the kth moment of n−1Nw under µw,β. By Proposition 2.51,

∂gk(β)

∂β
= gk+1(β)− gk(β)g1(β). (2.99)
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Now it is natural to form the moment generating function:

G(β, z) =
∑
k≥1

gk(β)z
k. (2.100)

Playing with this a bit gives a functional relation on G:

∂

∂β
G(β, z) =

∑
k≥1

zk(gk+1(β)− gk(β)g1(β)) (2.101)

= G(β, z)(z−1 − g1(β))− g1(β) (2.102)

= z−1G(β, z)− g1(β)(1 +G(β, z)). (2.103)

We also know the ‘initial values’ G(β, 0) = 0, and G(0, w) can be calculated directly (see the
‘Analytic Pattern Matching’ book for explicit formulas. β = 0 is the iid case.)

Question 2.56. What can be extracted from this formula? Having g1 along with G in the equation
is annoying. If we can reduce to a functional equation involving only g1(β) = mβ and g2(β), which
would work if there was a CLT for N for every β...

If you pretend that g1 = f is a fixed function of β, Mathematica gives the solution (to the
equation G(β, z) = G(β, z)(z−1 − f(β))− f(β), for fixed z)

G(β, z) = exp(z−1β − p(β) + p(0))

[
C −

∫ β

0
f(α) exp(−z−1α− p(α) + p(0)) dα

]
, (2.104)

where p(β) = limn→∞
1
n logZ(n)(β) is the pressure. Of course, f is not fixed, it’s the z1 coeffi-

cient of G. But maybe this (pretty explicit!) formula can help.
Note: if you try to work instead with F (β) =

∑
k≥1

1
k!gk(β)β

k = exp(p(β)), using 2.98 leads to

∂F

∂β
= 1− g1(β)F (β) + 2

∑
k≥1

1

k!
gk+1(β)β

k. (2.105)

I’m not immediately seeing how to write the last term in terms of F , maybe this is a dead end,
or I am missing an easy trick...? Here is another similar attempt to fix this: let

H(β, y) =
∑
j≥0

∑
k≥1

gj+k(β)
βk

k!
yj . (2.106)

Then applying the same tricks yields

∂H

∂β
=

1

1− y
+ 2y−1(H(β, y)− F (β))− g1(β)H(β, y). (2.107)

Observing that the summation in the expression above for the β derivative of F is the coefficient
of y1 in H, we get

∂F

∂β
= 1− g1F + 2∂yH(β, 0). (2.108)

Remember: our goal is to decide whether some partial derivatives of p are positive or negative
(or zero), so whatever exact formulas pop out here may be useful for that, even if we can’t solve
these equations explicitly.
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2.8.3 CLT?

Write mβ = limn→∞ g1(β) for short, and σ
2
β = limn→∞Var(n−1N) = limn→∞ n−1

(
E[N2]− n2c2β

)
.

At β = 0, N is an l-dependent sum of random variables, so it satisfies a CLT, i.e. viewed as a
random variable in the measure µnβ,w for fixed β = 0 and n→ ∞,

N − g1n

σ
√
n

→d N(0, 1). (2.109)

This should also be true for any β ∈ R, but it requires understanding the infinite-volume limit
of the measures µ better. (Proof coming soon?) Using this as an approximation, we have that for
each fixed β,

N ≈ mβn+ σβ
√
nZ, (2.110)

where Z is a Normal(0, 1). This gives approximations to the moments of N :

E[Nk] ≈ E[(mβn+ σβ
√
nZ)k)] (2.111)

= mk
βn

k + kmk−1
β σβn

k−1/2E[Z] +
(
k

2

)
mk−2

β σ2βn
k−1E[Z2] + · · · (2.112)

= mk
βn

k +

(
k

2

)
mk−2

β σ2nk−1 +O(nk−2). (2.113)

In particular, E[N ] ≈ mβn,

E[N2] ≈ m2
βn

2 + σ2βn, (2.114)

and

E[N3] ≈ m3
βn

3 + 3mβσ
2
βn

2. (2.115)

Now we plug into Proposition 2.51:

∂mβ

∂β
≈ lim

n→∞

1

n
Cov(N,N) = σ2β, (2.116)

and

∂σ2β
∂β

= lim
n→∞

∂

∂β
n−1Var(N) (2.117)

= lim
n→∞

n−1

(
∂

∂β
E[N2]− ∂

∂β
(E[N ]2)

)
(2.118)

= lim
n→∞

n−1
(
E[N3]− E[N2]E[N ]− 2E[N ] Var(N)

)
(2.119)

≈ lim
n→∞

n−1(m3
βn

3 + 3mβσ
2
βn

2 − (m2
βn

2 + nσ2β)(mβn)− 2mβσ
2
βn

2) (2.120)

= 0 (!!!) (2.121)

(Here we used Proposition 2.51 twice, plus the product rule, to evaluate the derivatives.)

What happened? The expression for the derivative of σ2β cancelled, so everything vanished!
This is all fine, but useless because the normal approximation to N is not good enough: with a
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better approximation, we would see that this expression does not cancel to linear order Θ(n), so
we would get some actual expression in the limit.

Question 2.57. Maybe the combinatorial/Markovian structure of the measure µ is enough to com-
pute E[N ],E[N2] and E[N3] precisely enough so that this calculation can be carried out?

If it works, this would be a kind of bootstrapping: we first get good enough approximations
to the moments of N so that we can solve for the moments explicitly via a system of differential
equations! It may be that further moments of N pop out, so it may be a system involving the first
l moments of N , or perhaps the full moment generating function would be required.

Question 2.58. Does the function Ew,β[Nv] always have a single critical point? When is it a global
max/min? When is the extreme point at β = 0?

Some computer simulations have been carried out for this. I used Glauber dynamics to approx-
imate the function fw,v(β) = Ew,β[Nv] for large n, and β ∈ [−b, b] for b ≈ 5. The function f always
appears to be smooth (probably analytic), the limit β → −∞ exists and agrees with γw, and the
limit β → ∞ exists and agrees with the density of T ’s in the ‘periodic tiling of Z by w’s. Here are
the results I recorded:

� v = 1

– w = 1001: f has a maximum at β = 0

– w = 100: f strictly decreasing

– w = 11: f strictly increasing

– w = 100110: f always exactly 1/2 (clear by symmetry)

– w = 110010: f always exactly 1/2 (not sure why??)

– w = 10011100: f always exactly 1/2 (not sure why??)

� v = 11

– w = 00: f strictly decreasing

– w = 1001: f strictly decreasing

– w = 111: f strictly increasing

– w = 10011100: f strictly increasing

� v = 00, w = 1001: f decreasing then increasing, minimum around β = 1.2 (!!)

� v = 10, w = 1001: f strictly increasing

� v = 01, w = 1001: f strictly increasing

� v = 0000, w = 1001: f strictly decreasing

� v = 11, w = 101: f has a maximum at β = 0

Question 2.59. According to these simulations, Ew,β[Nv] is always a monotone function of β for
β ∈ (−∞, 0). Is this always the case? It would allow us to just compute at β = 0 and answer the
density question! But maybe it’s too much to hope for.

I also simulated Ew,β[Nw] as a function of β: it is strictly increasing, and appears to depend
only on the correlation polynomial of w, i.e. these functions are identical for w,w′ with the same
correlation polynomial. (Perhaps this can be shown directly?)
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2.9 Martingale and hitting time

In this section we recall the martingale method, which seems to have first been spelled out by Li in
full detail, though it’s semi-folklore, Conway and Feller knew it. We start with the iid case, where
the martingale is surprisingly robust and versatile, then explain how it can be generalized to an
arbitrary markov chain, with an eye toward measures of maximal entropy for SFTs, in the next
section.

2.9.1 IID case

Let w ∈ [q]l be any finite word. Generate iid digits Xi ∈ [q] uniformly at random. Denote by τw
the hitting time

τw = min{t : (Xt−l+1, Xt−l+2, . . . , Xt) = w}. (2.122)

We construct a martingale with respect to the X process as follows. At each time t = 1, 2, . . .,
imagine a better arrives just before digit Xt arrives and places a 1 dollar bet on the event Xt = w1.
Then we – the casino – pay out with odds 1 : q if the bettor is successful, otherwise she loses her
1 dollar investment. If she is successful, then she bets again on the next digit of w, i.e. on the
event Xt+1 = w2, always betting her total gross winnings. Whenever she loses, she leaves and never
places another bet. Thus, at each time t, there may be up to k bettors in the game. Set

Wt = net profit of the casino up to all bets on X1, . . . , Xt. (2.123)

Then Wt is clearly a martingale, in this case with bounded increments. We now apply the
optional stopping theorem at the stopping time τw. At time τw almost all bettors are gone, except
the ones who successfully bet on v just before or while the first w occurred. So to compute Wτw ,
the casino has collected gross profit τw, minus the winnings of all the bettors still alive at that time:

Wτw = τw −
∑

j∈O(w)

qj = τw − ϕw(q). (2.124)

Thus by the optional stopping theorem (which is valid here since τ is sub-exponential),

0 = EWτw = Eτw − ϕw(q) =⇒ Eτw = ϕw(q). (2.125)

This martingale construction can be modified in many ways. We now work through a number
of examples.

(Probabilities for τ) Fix a word w and an integer s ≥ 1. We build a martingale Ss
t by putting

a single bettor who arrives at time s and bets 1 dollar on the word w. Again we will apply the
optional stopping theorem to S at time τ = τw. Observe that

Ss
τ = 1{τ ≥ s} −

∑
j∈O(w)

qj1{τ = s+ j − 1}. (2.126)

So by the OST,

0 = ESs
t = P(τ ≥ s)−

∑
j∈O(w)

qjP(τ = s+ j − 1). (2.127)

This can be thought of as a recursive equation that determines the probabilities ps = P(τ ≥ s),
namely
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ps =
∑
j∈O

qj(ps+j−1 − ps+j). (2.128)

One can solve for the generating function
∑

s≥1 z
sps by the usual methods, (using the initial

values ps = 1 for s = 1, 2, . . . , l), obtaining

∑
s≥1

psz
s =

zϕw(qz
−1)

1− (z − 1)ϕw(qz−1)
. (2.129)

This recovers a result from Guibas-Odlyzko. Using the martingale is much more elegant than
futzing around with recursions! Another similar example is the generating function for P(τ = t):
to obtain this, one can form the martingale where bettors still arrive at each time and bet that w
will occur, but the initial bet size of the bettor at time s is zs for some z ∈ R. If z is sufficiently
small, the OST can be applied, and one will obtain (after some algebra) the MGF of τ .

The generating function E[zτ ] can also be obtained by having a bettor put a bet zs−1 at each
time s that the word w will occur, and following the same rules as before (when you lose you’re
out, and when you win you ante all your winnings). Then stopping at time τ gives

E[1 + z + · · ·+ zτ−1] =
∑
j∈O

zτ−j , (2.130)

which after some algebra gives

E[zτ ] =
∑
s≥1

P(τ = s)zs =
1

1− (z − 1)ϕw(qz−1)
. (2.131)

This is equivalent to 2.129 by writing out ps as a sum and using Fubini.

(Backwards chain) Fix w ∈ [q]l. Suppose we look backwards from time τ = τw, i.e. at the
random process Ys = Xτ−l+1−s for s = 1, 2, . . .. Is Ys a markov chain up to the stopping time
τ − l + 1? Here is a strategy to at least compute the distribution of Xτ−l. For definiteness, set
Xs = † for s ≤ 0, so if τ = l, then Xτ−l = †. For each i ∈ [q], consider the word iw, i.e. append i
to the front of w. Consider the martingale U i

t where bettors arrive at each time, and they bet on
the word iw occurring. Then we will stop at time τw and compute. First a quick definition that
will be useful throughout:

Definition 2.60. For any words w ∈ [q]l, v ∈ [q]k, let O⃗(w, v) denote the ‘directed’ overlap set,
namely for j ∈ [k ∧ l], j ∈ O⃗(w, v) if the first j digits of v match the last j digits of w. Define the
‘directed’ overlap polynomial accordingly:

ϕ⃗w,v(t) =
∑

j∈O⃗(w,v)

tj . (2.132)

Then we have

U i
τ = τ − ql+11{Xτ−l = i} −

∑
j∈O⃗(w,iw)

qj , (2.133)

where Applying the OST and plugging in the value for Eτ gives

P(Xτ−l = i) = q−l−1(ϕw(q)− ϕ⃗w,iw(q)), (2.134)
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where ϕ⃗ is the corresponding ‘directed’ overlap polynomial. As a check, with q = 2 and w = 11,
we have ϕ⃗w,1w = ϕw, so P(Xτ−l = 1) = 0 in this case, which is correct because if the digit before
the first 11 was a 1, then the first 11 would have been one digit earlier. A more interesting example
is q = 2 and w = 1010: then ϕ⃗w,0w(2) = 23 + 2, since 01010 overlaps 1010 in a size 3 prefix and
a size 1 prefix; so in this case P(Xτ−4 = 0) = 2−5(24 + 22 − 23 − 2) = 10

32 , which is confirmed by
simulations. Note that here P(Xτ−4 = †) = P(τ = 4) = 2−4, and P(Xτ−4 = 1) = 5

8 .
Generally, if v is any word of length k, betting on vw and stopping at time τ = τw and applying

the same martingale method as above yields

ϕw(q) = ϕ⃗w,vw(q)+

k∑
i=1

ql+iP(YiYi−1 · · ·Y1 = v1v2 . . . vi)1{w1w2 · · ·wk−i = vi+1 · · · vk, l−k+i ∈ O(w)}.

(2.135)
Note that the events involving Y appearing in the above formula include the cases where τ is

small so that Yi = † for some i, in which case an event like {Yi · · ·Y1 = v1 · · · vi} cannot occur.
This formula can be used to give explicit expressions for transition probabilities of the chain Ys.
For example:

Fact 2.61. If l − 1 /∈ O(w), i.e. if w ̸= il for any i ∈ [q],

P(Y2 = i|Y1 = j) = q−1 ϕw(q)− ϕ⃗w,jw(q)

ϕw(q)− ϕ⃗w,ijw(q)
(2.136)

If l − 1, l − 2 /∈ O(w),

P(Y3 = i|Y2 = j) = q−1
qϕw(q)−

∑
k∈[q] ϕ⃗w,ijkw(q)

qϕw(q)−
∑

k∈[q] ϕ⃗w,jkw(q)
(2.137)

The quantities ϕ⃗w,ijw(q) and ϕ⃗w,jw(q) are closely related, since u ∈ O⃗(w, ijw) =⇒ u − 1 ∈
O⃗(w, jw) for u ≥ 2.

Question 2.62. Decide whether the backwards markov chain Ys converges quantitatively as s→ ∞
to the maximal entropy markov chain for the shift space where w is forbidden. This should be clear if
we condition on τ ≥ t for t large, but even unconditionally there should be some kind of convergence,
e.g. for the transition probabilities for Y .

(Word counts) We can compute word counts up to the stopping time τ via this method. We
illustrate this by showing a simple method to compute the expected number of copies of a word
v in (X1, . . . , Xτ ). Generally, fix words w ∈ [q]l, v ∈ [q]k for k ≤ l, and assume w ̸= v (the case
w = v is trivial). Let Nv(t) denote the number of copies of v in X1, . . . , Xt: we will give an exact
formula for ENv(τw). We build a martingale Qt by having bettors arrive at each time, but instead
of betting on w, they bet on v. If a bettor ever witnesses a copy of v, they take their qk winnings
and go home. We stop at time τ = τw. Then

Qτ = τ − qkNv(τ)− ϕ⃗w,v(q) + qk1{k ∈ O⃗(w, v)}, (2.138)

since we payout qk for every v that occurs, plus possibly some extra prefixes of v that we see
as suffixes of w, but excluding the case where v is itself a suffix of w. Thus

ENv(τw) = q−k
(
ϕw(q)− ϕ⃗w,v(q) + qk1{k ∈ O⃗(w, v)}

)
. (2.139)

In particular:
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Fact 2.63. Let w ∈ [q]l be any word. For any a ∈ [q],

ENa(τw) = q−1Eτw. (2.140)

Generally, if v = v1 · · · vk ∈ [q]k, then ENv(τw) does not depend on vk.

So, no matter what the word w is, the average number of times some letter a appears is always
an equal share of the hitting time. (Maybe there is a simpler proof of this fact? It would follow
from the fact that ENa(τw) doesn’t depend on a, since

∑
a∈[q]Na(τ) = τ . Of course, it also follows

by using the OST on the martingale N1(t) − q−1t, but maybe there is an even more elementary
argument.)

Question 2.64. Describe the distribution of Na(τ). Does it depend on a and w, or just Eτw?

Annoyingly, it seems difficult to compute the moment generating function of Na(τ). One at-
tempt is to put at each time s a better with starting bet zNa(s−1), and bet on the word w. One
obtains

E

[
τ−1∑
s=1

zNa(s−1)

]
=
∑
j∈O

qjE[zNa(τ−j)]. (2.141)

The RHS is a deterministic polynomial times the MGF of Na(τ), but the LHS does not seem to
have a simple form: for example, I don’t see how to apply Wald’s lemma in a useful way, despite the
fact that τ is a stopping time for the Na(s) sequence and the Na(s) are built using iid randomness.
(Maybe I am missing something here?)

Since Na(τ) doesn’t immediately help measure the asymptotic letter density γw for the cor-

responding SFT, maybe we should look at a normalized version of Na, say ρ(t) = Na(t)
t , and

ρw = ρ(τw) =
Na(τw)

τw
.

Question 2.65. Can we actually compute Eρw? Is it rational?

Here is a striking finding: in 107 empirical trials, I got Eρw < 1/2 for w = 0110 and > 1/2 for
w = 1001, the reverse of how the letter densities go! Balazs M. came up with a proof that this is
a general phenomenon:

Theorem 2.66. Fix q = 2. Assume that γw,n <
1
2 for all n and that γw < 1

2 , where γw,n is the
letter density of 1s over words of length n, and γw is the limiting density of 1s. Then Eρw ≥ 1

2 .

The idea behind this is the following. In measuring γw, we only look at words w in Ωn(w),
whereas in the density of 1s up to the hitting time, it’s like measuring the density of 1s when a w
is guaranteed to appear, which is more like living in the complement of Ωn(w).

(Specialized betting) Here is a variant of the martingale that works, but seems annoying to
work out. The idea is to only allow bettors to arrive and play the game after a copy of some word
v has occurred in the X sequence. In other words, a bettor arrives and bets on sequence w at time
s if and only if (Xs−k, Xs−k+1, . . . , Xs−1) = v. As usual, since the bets are always made on fresh
randomness (and are mean zero), this yields a martingale Qt. We obtain

Qτ = N1(τ)− 1{(Xτ−k+1, . . . , Xτ ) = v} −
∑
j∈[k]

1{(Xτ−j+1, . . . , Xτ ) = v1, . . . , vj}. (2.142)

Indeed, by time τ exactly N1(τ) bettors have entered the game, except we may have overcounted
the case where v has just occurred at time τ , in which case we see an extra v but no extra bettor.
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Question 2.67. Can this formula be decomposed in a nice way to involve some correlation poly-
nomials, and ‘backwards’ chain probabilities that we can actually compute?

(Multiple words) Here is a first attempt at generalizing the proof of Theorem 2.5 to the setting
where the underlying shift of finite type is a different shift space, namely when we first forbid a
fixed word v, then further forbid some word w (see Question 2.81 for a conjecture along this line).
We hope to recover a generating function formula like 2.129, and thus describe the entropy of the
further subshift where w and v are both forbidden as a root of some explicit polynomial, which
will involve the correlation polynomials. To achieve this, we fix a time t ≥ 1, and run the betting
scheme where a single bettor arrives at time t, and bets on v, and we stop at time τ = τv ∧ τw.
Assuming that neither v nor w is a subword of the other, so that τv = τw is impossible, I obtain

P(τ ≥ t) =
∑

j∈O(v)

qjP(τ = τv = t+ j − 1) +
∑

j∈O⃗(w,v

qjP(τ = τw = t+ j − 1). (2.143)

The same equality holds when v and w are reversed, by symmetry. We want to solve for the
generating functions a(z) =

∑
t≥1 P(τ = τv = t)zt and b(z) =

∑
t≥1 P(τ = τw = t)zt, which together

are

∑
t≥1

P(τ ≥ t)zt =
∑
t≥1

∑
s≥t

P(τ = s)zt (2.144)

=
∑
s≥1

s∑
t=1

P(τ = s)zt (2.145)

=
∑
s≥1

P(τ = s)
zs+1 − z

z − 1
(2.146)

= za(z) + zb(z)− z

1− z
, (2.147)

where we used the fact that P(τ = s) = P(τ = τv = s) + P(τ = τw = s). Note that you need to
be a bit careful when evaluating at z = 1, which is not actually a pole. Combining these equations
together, one can solve for a and b, obtaining

a(z) =
1

1− z

ϕw(x)− ϕ⃗w,v(x)

ϕv(x) + ϕw(x)− ϕv(x)ϕw(x)− ϕ⃗v,w(x)− ϕ⃗w,v(x) + ϕ⃗v,w(x)ϕ⃗w,v(x)
, (2.148)

And similarly for b. (This should be rechecked.) It might be possible to analyze this the same
way as in our proof of Theorem 2.5. The formula looks a bit ugly, but for fixed v = 11 say, i.e.
when the ambient shift is the golden mean (GM) shift and w is any allowable word in the GM shift,
it might be possible to make the same proof work.

2.9.2 Markov chain

Suppose we have a markov process X1, X2, . . . with the natural filtration Ft = σ[(Xs)s≤t], and
Xt taking values in our (finite) alphabet [q]. We’re thinking of the Xi as digits generated from
the MME (measure of maximal entropy) of some SFT (shift of finite type), and although this
construction works perfectly well for arbitrary markov processes, to get nicer formulas we further
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assume that X is a markov chain, i.e. has memory at most 1. For the case of markov chains arising
from measures of maximal entropy for SFTs, this comes at no cost, since we can always lift an
arbitrary SFT to a higher block representation where it has memory 1. (Also, this lift is completely
explicit: if X is an SFT with forbidden set F having words of length ≤ l, then the MME on X will
have memory l; and we can build a conjugate, i.e. isomorphic, shift Y on the alphabet [q]l with
memory 1, namely: all transitions (x1, . . . , xl) → (x2, . . . , xl, y) are allowed for any y ∈ [q] such
that no element of F occurs as a subword of the latter.)

Fix a word w of length l which is allowed in the language of X, and consider the stopping time
τw = min{t : (Xt−l+1, Xt−l+2, . . . , Xt) = w}. In this section we derive a general formula for E[τw],
which reduces to a relatively simple formula closely related to the autocorrelation polynomial of
the word w.

The plan is to mimic the ideas from the iid case, i.e. build a betting game where we bet on
occurrances of the string w, and apply the optional stopping theorem at time τ . For any t ≥ 0, any
finite string x ∈ [q]t, and any i ∈ {1, 2, . . . , k}, say the triple (i, t, x) is streaking if the last i letters
of x are the first i letters of w (any triple with i = 0 is streaking), and define

Q(i, t, x) = P(Xt+1 = wi+1|(X1, . . . , Xt) = x), (2.149)

and if Q(i, t, x) ∈ (0, 1) let

G(i, t, x) =

{∏i−1
j=0Q(j, t− i+ j, (x1, . . . , xt−i+j))

−1, (i, t, x) streaking

0, (i, t, x) not streaking
(2.150)

(else ifQ(i, t, x) ∈ {0, 1} thenG(i, t, x) = G(i−1, t−1, (x1, . . . , xt−1)). Also denote by Bet(i, t, x)
the probability distribution taking valueG(i, t, x)Q(i, t, x)−1(1−Q(i, t, x)) with probabilityQ(i, t, x)
and value −G(i, t, x) with the complementary probability if Q(i, t, x) /∈ {0, 1} and (i, t, x) is streak-
ing, and Bet = 0 deterministically otherwise. To explain the terms, imagine that a bettor arrives
at each time t ≥ 0 and bets one dollar on the digits of w occurring in X in order, started from digit
t, and reinvests all her winnings on the next digit if she wins, or goes home if she ever loses. Then
a triple (i, t,X) is streaking if the bettor who arrived at time t− i+ 1 bets on the correct digit at
least i times, Q(i, t,X) is her probability of betting correctly on the i+ 1st digit, and G(i, t,X) is
her total fortune (including the initial 1 dollar investment) up to the ith digit, and Bet(i, t,X) is
her gamble on the i+1st digit. The bet amounts are arranged so that each bet is fair (mean zero):
if some amount g is bet on a digit that has probability q to occur, then our net gain is gq−1 − g if
we win (with probability q) and −g if we lose (probability 1− q), which has expected value

q · (q−1g − g) + (1− q) · (−g) = 0. (2.151)

We use all these bets to define a martingale Wt which is the total net profits of the casino up
to time t, given by

Wt = t−
l∑

i=1

G(i, t, (Xs)s≤t). (2.152)

Observe that conditionally on (Xs)s≤t = x, the increment ∆Wt = Wt+1 − Wt is equal in
distribution to

l−1∑
i=0

Bet(i, t, x), (2.153)
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which has expectation zero (by linearity of expectation). It follows that E[Wt+1|Ft] = Wt, i.e.
W is indeed a martingale with EWt = 0 for all t ≥ 0. If the underlying markov process is irreducible
(and w has positive probability to occur), then τw is sub-geometrically distributed, i.e.

P(Tw > t) ≤ exp(−ct) (2.154)

for some c > 0, and thus τ and Wt satisfy the conditions of the optional stopping theorem
(OST). (This is an easy general fact about irreducible markov chains: hitting times are always
sub-geometric. So since X is markov in some higher block representation, we also get exponential
decay in the lower block representation, with constant c scaled by the ratio between the block
lengths.) Applying the OST at time τ , so all bets on digits through Xτ = wl have been settled,
yields

EWτw = Eτ −
l∑

i=1

E[G(i, τ, (Xs)s≤τ )] = EW0 = 0. (2.155)

Looking back at the definition of G, the ith term in this sum is nonzero exactly when the last
i digits of w are equal to the first i digits of w, since at time τ , the last l digits of X are w. Thus
we can write

Eτ =
∑

i∈O(w)

E[G(i, τ, (Xs)s≤τ )], (2.156)

where O(w) is the usual overlap set of w (i.e. the set of i such that the first i digits of w match
the last i digits of w.) When X is markov with memory 1, the values Q(i, t, x) appearing in the
product G(i, t, x) depend only on the previous digit of x: denote these probabilities by P(a → b)
for a, b ∈ [q]. For i < l and t = τ , the digit that the i-streaking bettor saw when they arrived is
deterministically wl−i, so we get

G(i, τ, (Xs)s≤τ ) =

 i∏
j=1

P(wl−j → wl−j+1)

−1

(for i ∈ O(w) \ {l})

(where we used the fact that i ∈ O(w) to get wi = wl), plus the one special bettor who won the
(random!) jackpot:

G(l, τ, (Xs)s≤τ ) = P(Xτ−l → w1)
−1 ×

 l∏
j=1

P(wl−j → wl−j+1)

−1

(2.157)

Note that the first term in this product is not deterministic – it depends on the digit Xτ−l.
When X is the MME markov chain of a 1-step SFT, these formulas become

G(i, τ, (Xs)s≤τ ) = λir(wl−i)r(wl)
−1 (2.158)

and

G(l, τ, (Xs)s≤τ ) = λlr(Xτ−l)r(wl)
−1, (2.159)

where λ is the entropy of the MME and ℓ and r are the left and right eigenvectors (with
eigenvalue λ) of the edge shift graph on [q] representing the SFT X, scaled so that ℓ is a probability
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vector and ℓT r = 1. (This comes from a general formula for the measure of maximal entropy for a
SFT of memory 1, sometimes called the ‘Parry measure:’ it is given by the matrix

ν(a, b) =
r(b)

λr(a)
, for a, b ∈ [q], (2.160)

which implies

ν(a, x1, x2, . . . , xn, b) = λ−n r(b)

r(a)
. (2.161)

See section 2.5 for some explicit examples.) Putting this together, we get:

Theorem 2.68. Let X be a markov chain that realizes a measure of maximal entropy for a 1-step
shift of finite type, and let w be a finite word (of length l) in the language of X. Then the hitting
time τw of the word w in X satisfies

E[τw] = r(wl)
−1

λlE[r(Xτ−l)] +
∑

i∈O(w)\l

λir(wl−i)

 (2.162)

Example 2.69. When X is the full shift over [q], i.e. X is iid over [q], λ = q, ℓ = q−11⃗ and r = 1⃗,
and we get

E[τw] =
∑

i∈O(w)

qi = ϕw(q) (2.163)

where ϕw(q) is the auto-correlation polynomial of w.

More generally, whenever r is a constant vector, we don’t have to deal with the pesky expectation
in Theorem 2.68.

Example 2.70. Suppose the edge shift of X has uniform in-degree, i.e. the edge shift matrix for
X is doubly stochastic (and let λ denote the exponential of the entropy). Then r = 1⃗ is the right
eigenvector for eigenvalue λ, so we obtain the same formula:

E[τw] = ϕw(λ). (2.164)

An example of such a shift is with q = 3, and the forbidden words F = {11, 22, 33}. Then the
1-block representation is a markov chain with edge shift matrix J3 − I3, i.e. the matrix of all 1s
except for 0’s on the diagonal, and we have λ = 2 and right eigenvector 1⃗.

Example 2.71. Let X be the golden mean shift, i.e. with forbidden word {11} over alphabet {0, 1},
and assume w1 = 1. One computes directly that, for the 2 by 2 matrix representation of X, with

entropy logφ = log 1+
√
5

2 , ν(0, 0) = φ−1, ν(0, 1) = φ−2. Thus for x = (x0, x1, . . . , xk),

P(X = x|X0 = x0) = φ−N00(x)φ−2N01(x), (2.165)

where N00(x) and N01(x) count the number of 00 or 01 subwords of x, respectively. But it’s an
easy exercise (by induction, for example) that for any x with initial and final digits xi and xf ,

N00(x) + 2N01(x) = len(x)− 1− xi + xf (2.166)
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so using the assumption w1 = 1, which implies XT−l = 0 deterministically, (and also wl−i = 0
for i ∈ O(w), since for such i wl−i+1 = w1 = 1)

E[τw] = φwlϕw(φ) (2.167)

Question 2.72. Compute explicitly some other small example that doesn’t fit into any of the above
examples. Do we still get a similar formula, i.e. some polynomial in λ times ϕw(λ)?

Question 2.73. Can we generalize the martingale construction in this case, just like in the iid
case? It seems like some tricky terms arise that aren’t as easy to deal with.
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2.10 Auto/cross correlations

This section is devoted to a purely combinatorial problem, which has implications for the general
question: when are two SFT’s with a single forbidden word conjugate? Fix a word w ∈ [q]n, or
more generally a pattern w on some subset of Zd, and consider the set

Uw = {v ∈ [q]n : O(v, w) = ∅}, (2.168)

where O(v, w) is all the overlaps, see Proposition 2.43. What is the size of Uw? Simulations
suggest |Uw| ∼ bwq

n for large n. We can prove:

Proposition 2.74. If w is not one of the four ‘reducible’ words (see 2.9), then |Uw| > 0.

Chengyu wrote up a constructive proof. This is trivial for q > 2, but when q = 2 there is
something to do. Indeed, for k ∈ [n] let Ak(w) be the set of words in [q]n that overlap with the
first k digits of w, i.e.

Ak(w) = {v ∈ [q]n : vn−k+1 · · · vn = w1 · · ·wk}, (2.169)

and similarly let Bk(w) denote the words that overlap w in the last k digits of w. Then since
|Ak(w)| = |Bk(w)| = qn−k, we have by the triangle inequality that

qn − Uw =

∣∣∣∣∣
n⋃

k=1

Ak(w) ∪Bk(w)

∣∣∣∣∣ ≤ 2
n∑

k=1

qn−k =
2(qn − 1)

q − 1
, (2.170)

which is stricly less than qn when q ≥ 3. For q = 2, using Markov’s inequality (which, in the
following form, is probably equivalent to the above calculation?) doesn’t work: letting V be a
random word,

P(|O(V,w)| ≥ 1) ≤ E|O(V,w)| = 2− 2−n, (2.171)

which is a factor of 2 off. Somehow the ‘reducible’ words need to play a role in such a proof.

Conjecture 2.75. For every ϵ > 0, there exists δ > 0 such that for all n sufficiently large and for
at least (1− ϵ) many w ∈ [q]n, |Uw| ≥ δqn.

It would be nice if there was a ‘linear algebra’ proof, i.e. by describing Uw as the (approximate?)
solution set of some linear system of equations.

Question 2.76. Give a condition on a sequence wn ∈ [q]n for n = N such that

q−n|Uwn | → c ∈ (0,∞) (2.172)

Some examples where we have this convergence:

� wn = 110n−2, c = 2−3

� wn = 110n−411, c = 2−4

� wn = 1n, c = 2−2 (this is easy to see directly, and is exact for every n)

� wn = (10)n/2, c = 2n/4, this is exact for all n (even and odd, i.e. 10101 when n = 5)

� wn = (100)n/3: the limit doesn’t exist, but oscillates depending on the value of n mod 3:
when n ≡ 0 mod 3, |Uwn | ∼ 2−4.4152n; when n ≡ 1 mod 3, i.e. w = (100)k1, |Uwn | ∼ 2−62n;
when n ≡ 2 mod 3, i.e. w = (100)k10, |Uwn | ∼ 2−52n.
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2.11 Sampling failed successfully?

Consider the following simple way to generate sequences that avoid a pattern w: generate iid
uniform bits from [q] one at a time, and when a w occurs on the frontier, delete all the digits of
that copy of w, and continue generating one bit at a time. This algorithm generates a growing
random sequence Z with no subword w. How similar is the resulting sequence to a uniform random
w-avoider? It appears to be a different distribution altogether. Here is some partial, indirect
evidence:

Fact 2.77. Suppose w is balanced, i.e. w has length kq for some positive integer k, and it has
exactly k copies of each letter a ∈ [q]. Let Zt denote the random word generated this way, let Na

t

denote the number of as in Zt, and let Lt denote the length of Zt (so Lt ≤ t, since the length
decreases by kq whenever a copy of w appears.) Then for any letter a ∈ [q],

Mt = Na
t − q−1Lt (2.173)

is a martingale.

Proof. When adding the next digit generates a copy of w, the next letter has chance q−1 to be a, and
∆L = 1. When a copy of w is created, ∆N = −k and ∆L = −qk. In either case, E∆M = 0.

Take q = 2 and w = 1001 as an example. We get as a corollary (by optional stopping) that
if τ is any sufficiently nice stopping time for the Zt process, say the first time when Lt = n for
positive integer n, then Zτ has on average half 0s and half 1s. But for n large, a uniformly random
1001 avoiding block does not have half 1s and half 0s on average. Thus Zτ cannot have the same
distribution, even approximately asymptotically, as a uniformly random 1001-avoiding block.

Question 2.78. Prove or disprove: for any w, TV(Zτn , ωn) does not converge to 0, where ωn is
sampled uniformly at random from Ωn(w), and TV is total variation distance.

Probably this is true, we just need a better statistic to distinguish between the two distributions,
one that works in all cases. Maybe one can give a direct entropy gap between the two.
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2.12 Disconnected patterns

Consider the following more general notion of a forbidden patterns, where we allow ‘disconnected’
sets of letters in the following way. For any positive integer k, call a coloring w : [k] → [q] ∪ {?} a
pattern, and say a block x = x1x2 · · ·xr avoids w if there is no i such that for j = 1, 2, . . . , k, either
wj =? or xi+j = wj . In other words, a copy of pattern w in x is any subword of length k where the
labels in w that are in q match those in x, but if the label in w is a ? then it doesn’t need to match.
This is the same as enlarging the forbidden set to be a union of qm many words. For example, over
the binary alphabet, forbidding the pattern w = 1?1 is equivalent to forbidding both 101 and 111.

Which results carry over to this context? The martingale formula for the expected hitting time
already runs into trouble. You can define the same betting game, stopping when pattern w occurs
for the first time, but to compute the winnings you need to know exactly what length k word
occurred at the end, so you know which bettors had winnings. Again the self-overlaps of w are
involved, but in a more complex way.

Example 2.79. Take for example w = 1??1. Let F = {1001, 1011, 1101, 1111}, τ the hitting time
of pattern w (i.e. the minimum of the hitting times τf for f ∈ F), and pf the corresponding proba-
bilities pf = P(τ = τf ). Using the general formula of Li (which applies the martingale construction
for any finite number of forbidden words), one can compute everything explicitly:

p1001 =
25

71
, p1011 =

16

71
, p1101 =

18

71
, p1111 =

12

71
, and Eτ = 542/71. (2.174)

Let Q = Xτ−2, R = Xτ−1 be the digits of the two ?’s when pattern w first appears. The
distribution of the pair (Q,R) can be computed from the pf values: P(Q = q,R = r) = p1qr1. One

finds Q ∼ Ber(2871), R ∼ Ber(3071), and Corr(Q,R) =
√

6
61705 ∼ 9.86× 10−3.

Applying the martingale idea directly to pattern w, where bettors arrive, and bet in the same
way but only on non-? digits, one obtains

Wτ = τ − (4 + 2 · 1{Q = 1}+ 2 · 1{R = 1}+ 2), (2.175)

where Wτ is the total casino winnings. Taking expectations, this agrees with the values above.

In general, the formula 2.175 will contain a term corresponding to each self-overlap of the word
w, where ?’s may overlap with any other letter.

Question 2.80. Already I think it would be interesting to look at some restricted classes of these
guys. How about wn = 1?n1? Is the entropy monotone in n? I guess we expect the entropy
to converge to q as n → ∞...? What do the hitting time distributions look like? What is the
distribution of the intermediate digits at the hitting time? Maybe it has a nice limit in n!
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2.13 Conjectures/questions

Here we collect the big motivating questions/conjectures. There are many other questions and low
hanging fruit scattered throughout the writeup.

Question 2.81. To what extent does the Guibas, Odlyzko result 2.5 hold for arbitrary shift spaces?

Here is our best guess as of October 2023:

Conjecture 2.82. Let X be an irreducible shift of finite type with entropy λ, and let w,w′ be
allowable words in X with the same extender sets. Let λw and λw denote the entropies of the
further subshifts obtained by additionally forbidding the words w or w′. Then

λw ≤ λw ⇐⇒ ϕw(λ) ≤ ϕw(λ) ⇐⇒ Eτw ≤ Eτw′ (2.176)

where ϕ is the auto-correlation polynomial, τw is the hitting time of w, and E denotes expectation
with respect to the measure of maximal entropy markov chain on X.

This is verified by computer simulations of some shift spaces X with one or two forbidden
words. The ‘extender set’ condition is a combinatorial condition that we guessed after looking
at some examples. The closest we can get to proving this or something like it in general is the
generalized martingale argument in section 2.9: we could try to mimic the proof sketch 2.1, if we
can compute the corresponding generating function for a general shift space.

Question 2.83. Can we massage the formula in 2.68 so the autocorrelation polynomial pops out?
Does the expected hitting time always have a simple polynomial formula involving the entropy, as
in example 2.71?

The martingale construction in section 2.9 is very robust, I think the results in the IID case
should port to general shift spaces, but I haven’t tried much yet.

Question 2.84. For the full shift over the binary alphabet, characterize the set of words w such
that forbidding w causes the density of 1s to increase/decrease/equal 1/2. Give a simple condition
to determine which of two forbidden words w,w′ will give larger density of 1s.

A partial answer and more detailed questions are given at the end of section 2.4. More generally:

Question 2.85. Understand the ‘word counting’ random variables Nw better (see section 2.7).
Prove detailed limit theorems for the joint distribution Nw, Nw′, e.g. joint CLT should be easy, but
we want more information about the error terms. Can the Gibbs measure calculations in section
2.8 be made to make sense in the limit n→ ∞?

It seems this kind of thing might be answerable by LDP theory of Varadhan. Question 2.59 is
particularly tantalizing.

Question 2.86. For any shift space X, describe the allowable words w such that further forbidding
w from X gives the maximal/minimal entropy loss.

Question 2.87. Carry out the same analysis with topological pressure, i.e. for underlying measure
iid Ber(p) for arbitrary p ∈ (0, 1) instead of just p = 1/2, or perhaps any distribution F on
a countable alphabet (e.g. Poisson-generated letters), or one of the gibbs measures (where some
words are weighted more heavily), or perhaps any general markov chain. Can we mimic the same
ideas in this setting? What is the entropy/MME?
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REX project (UBC undergrads) looked Penny’s game with arbitrary p. We found a few things,
including: when p = 1/2, the only time a longer string beats a shorter string, i.e. probability of
appearing first in an iid Ber(p) sequence is > 1/2, is when the shorter string has auto-correlations of
all lengths; and in the limit p→ 0, for fixed strings v, w, v beats w with probability in {0, 1/2, 1}.
(This last fact is easy to prove using the explicit formula for the probability that
one word occurs before another – one can check directly that there is never any
‘cancellation’ in the Conway formula.)
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3 Subsequence patterns in iid sequences

Fix a ‘pattern’ of length k, i.e. a σ ∈ [k]k, and let Zn be iid according to some fixed, discrete
distribution p on N, i.e. P(Z = j) = pj for j = 1, 2, . . .. Let Xσ

n be the conditional measure
of (Z1, Z2, . . . , Zn) on avoiding σ as a sub-pattern, in the sense of pattern avoiding permutations
(see the definition 1.3). Note that σ can have repeated elements. For example, if σ = 112, then
(Z) = 13222 is σ avoiding, but (Z) = 13223 is not. What can we say about X? As a first example,
consider:

3.1 σ = 11, arbitrary distribution

This is equivalent to conditioning that Z1, . . . , Zn are distinct. For an arbitrary distribution p, we
have the formula

P((Z)n is 11− avoiding) = n!
∑
|A|=n

∏
a∈A

pa = n!En(p), (3.1)

where the sum is over all subsets of N of size a. This is known to combinatorialists as (n! times)
the ‘elementary homogeneous symmetric polynomial,’ over the variables p1, p2, . . .. We can also
write inclusion probabilities in this way:

P(j ∈ Xn) =
1

En(p)

∑
j∈A,|A|=n

∏
a∈A

pa = pj ·
En−1(p\j)

En(p)
, (3.2)

where p\j denotes the sequence of pi’s, but with pj removed. More formulas can be obtained
like this, but it’s not clear what they’re useful for.

3.2 Uniform distribution

A natural setting is to take Z to be a uniform random variable on [N ] for some large integer N ,
and take n to be some function of N . Note that if N is much larger than n, say n = logN , then it’s
nearly identical to the situation where Z is uniform on (0, 1), which is exactly the case of pattern
avoiding uniformly random permutations.

So think of n as being large enough compared to N that there is a non-vanishing probability
of choosing the same element twice, i.e. when N = O(n2). Let A(σ, n,N) denote the set of σ-
avoiding strings of length n over the alphabet [N ]. For example, X11

n,N is simply a uniform random

subset of [N ] of size n, and |A(11, n,N)| =
(
N
n

)
. More interesting is X12, i.e. conditioning Z to be

non-increasing. These are not too hard to count:

|A(12, n,N)| =
(
N + n− 1

n

)
(3.3)

by a typical ‘stars and bars’ count. Note that X12
n,N can be thought of as a uniformly random

element of A(12, n,N), since there is a unique order of the elements of X making it non-increasing.
An interesting quantity to study here isMn,N = maxXn,N . Some calculations with binomials yield
that:

Lemma 3.1. Fix λ > 0. As N → ∞, we have the distributional convergence

N −M⌊λn⌋,N → Geo(1 + λ), (3.4)
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i.e.

P(M⌊λn⌋,N = N − s) → λ(1 + λ)−1−s for s = 0, 1, 2, . . . . (3.5)

Thus the maximum value of X is tight to N for n = O(N), and the distance away from N is
geometrically distributed, with parameter 1 + λ = 1 + n/N . For example, when n = N,λ = 2, so
the maximum is Geo(1/2) away from N .

Question 3.2. Come up with a simple combinatorial explanation for this phenomenon.

Todo: figure out how it works for n =
√
N or n = Nβ. There should be a similar limit theorem

with some geometric/exponeitially distributed distance. For example, when n =
√
N , the distance

should be on order
√
N , I think – after scaling properly, what do we get?
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