
Collisions of random walks and related diffusions

Jacob Richey ∗

November 8, 2018

Abstract

Consider n brownian motion particles on R, S1, or n discrete time random walks on a graph
G. A ‘collision’ occurs when two particles have the same position at the same time. Given a
rule for modeling interactions between particles, we can analyze the long term behavior of such
a system. We focus on the case where particles are independent, and briefly discuss variants,
such as the situation where particles are conditioned not to collide; or when there is a repelling
drift term between particles. We derive new formulas for collision times among two or three
simple random walks on Z. Also, we review the existing literature to gain insight about other
underlying graphs, and the case of multiple brownian particles.

1 Introduction

Collisions among random walks have been studied in a variety of contexts. In the discrete case,
Sousi, Peres and Barlow [1] gave the first steps to understanding the connection between the
underlying graph G and questions about collisions among multiple random walks on G: specifically,
they investigate what conditions are necessary to guarantee two random walks collide infinitely often
almost surely. We give a short account of their results in section 3. The other question that has
gained interest in the discrete case is about hitting times and cover times: given a graph G and
a vertex subset A ⊂ G, by how much is the hitting time of A or the cover time of A by random
walkers decreased as the number of particles increases [5] [4]?

In the discrete case, all kinds of rare events, such as triple collisions, will occur eventually with
positive probability. In the continuous regime with brownian particles, the first important question
is: do triple collisions occur? Tomoyuki and Ioannis [10] give a criterion in terms of the drift and
covariance structure to rule out triple collisions. In a slightly more general setting, where particles
may have drifts that depend on their rank relative to other particles, Andrey Sarantsev [15] gives
an elegant condition in terms of the particle drifts and variances to rule out multiple collisions,
which we summarize in section 4.

Another natural question of interest is: what does the system look like if we condition on
the particles never colliding [14]? In particular, what is the asymptotic probability of having no
collision for a long time[8]? For brownian motions on the circle, Hobson and Werner [9] give an
explicit description of the transition kernel for the process conditioned to have no collisions. David
Grabner [8] shows that the probability that no collision happens up to time t is a constant multiple
of t−n(n−1)/4, and explicitly computes the distribution of the particles conditioned on this event as
a Bessel process.

∗University of Washington; jfrichey@uw.edu.

1



The statistical physics literature also has some work on annihilating particle systems: for ex-
ample, the authors in [6] carried out explicit monte carlo simulations of such a system, and were
able to recover predicted equilibrium states for the temperature of the system over long time scales,
using asymptotics involving collisions between particles. Cepa and Lepingle [2] show that, when
particles have a space-dependent repulsion drift term – corresponding to, say, positively charged
quantum particles on a line – no triple collisions occur.

Collisions of multiple particles in one dimension is equivalent to the exit time of a single high
dimensional particle from a set, so analyzing collisions boils down to understanding such exit times.
This is essentially the strategy of all the papers considering Brownian particles mentioned above.
Ciesielski and Taylor’s 1962 paper [3] is a classic reference for such problems. For example, the
authors explicitly compute exit times from spheres, and the total time spent in a sphere before
escaping to infinity. Computing exit times in general is a difficult question, and is essentially
equivalent to solving a stochastic boundary problem on a high dimensional region.

2 Simple random walk

We start with some simple calculations regarding simple random walks in Z, which were known
previously [1]. Consider two independent simple random walks in discrete time X1, X2 starting
from 0. The first natural question to ask about particle collisions is: what rate do collisions occur
at? In other words, if Ct = |{s ∈ [1, t] : X1

s = X2
s }| is the number of collisions up to time t, then

what is the distribution of Ct? The expected value ECt can be calculated easily by summing over
all times up to t:

ECt =
t∑

s=1

P(X1
s = X2

s )

=
t∑

s=1

s∑
j=−s

P(X1
s = X2

s = j)

=

t∑
s=1

s∑
j=−s

P(X1
s = j)2.

Viewing the random walk as a path starting from (0, 0) with discrete steps (1,±1), the proba-
bility that X1 is at position j at time s is

P(X1
s = j) = 2−s × |{paths (0, 0)→ (s, j) with steps (1,±1)}|

This is only non-zero when j has the same parity as s, in which case the number of such paths
is
(

s
s/2+j/2

)
. Plugging this in yields

ECt =
t∑

s=1

4−s
s∑

k=0

(
s

k

)2

=
t∑

s=1

4−s
(

2s

s

)
∼ 2
√
t√
π
.

This simple calculation generalizes to the case of n independent simple random walk particles
{Xi

t : 1 ≤ i ≤ n}, all started from 0:
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Proposition 2.1. Let Cn,t denote the n-fold collisions of the particles up to time t, i.e. the random
variable

Cn,t = |{s ∈ [1, t] : X1
s = X2

s = · · · = Xn
s }|.

Then for some constants cn,

ECn,t ∼ cn


√
t, n = 2

log t, n = 3

1, n > 3

It makes sense that ECn,t is always a concave function of t for t large, since particles are less
likely to all be co-located for large t values.

Proof sketch: Just as in the case n = 2, we have

ECn,t =

t∑
s=1

s∑
j=−s

P(X1
s = j)n =

t∑
s=1

2−ns
s∑

k=0

(
s

k

)n
.

Now approximate asymptotically.

One immediate consequence of the above formula is:

Corollary 2.2. Two or three independent simple random walks on Z are all co-located infinitely
often, but four or more independent random walks are only co-located a finite number of times
almost surely.

Proposition 2.1 also gives the asymptotic rate of collisions among any subsets of particles: for
example, the expected number of k-subsets of particles that are co-located up to time t is, by
linearity of expectation,

E
∣∣∣{(s, S) : s ∈ [1, t], S ∈

(
[n]

k

)
, and Xi

s = j for all i ∈ S and some j ∈ [−s, s]}
∣∣∣ =

(
n

k

)
ECk,t.

It turns out that for two random walks, we can describe the distribution of Ct = C2,t very
precisely, via the following lemma:

Lemma 2.3. Let X1
t and X2

t be as above, and set τ = inf{t > 0 : X1
t = X2

t }. Then as T →∞,

P(τ = T ) ∼ 2√
π
T−3/2.

The proof will actuall give us an explicit, though complicated, combinatorial formula for the
distribution of τ . The actual distribution can be written down explicitly: we show how this can be
done later, after proving proposition 2.4.
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Proof. The idea is to look at the distance between the two particles Zt = X1
t −X2

t : Z is a sleepy
random walk with steps −2, 0, or 2, with probability 1

4 of moving to the left or right and probability
1
2 of staying put, and τ is the first return time of Z to the origin. The return time τ behaves like
the first return time of a non-sleepy random walk, but the sleepiness delays it a little bit. Note
that after each time where Z takes a ±2 step, it stays put for a geometric mean 2 amount of time,
since P(Zt = Zt+1) = 1/2.

Let Yi be iid variables for i ∈ N with distribution P (Y = k) = 2−1−k for k ≥ 0, let B be a
Bernoulli 1/2 random variable, and let σ = inf{t > 0 : Wt = 0} be the first return time to 0 for a
simple random walk started at W0 = 1. Then we have the distributional equality

τ
d
= B + (1−B)

(
1 + σ +

σ−1∑
i=1

Yi

)
. (2.1)

To explain this, first note that τ = 1 on the event that the first step Z takes is a sleepy step.
Otherwise, it moves to ±2, in which case we wait for Z to return to the origin. This is the same as
waiting for W to return to the origin, plus some number of sleepy steps at each vertex before we
return: there are Yi such steps at each site.

Recall that σ has distribution

P(σ = 2s− 1) = 4−s
2

s+ 1

(
2s

s

)
,

and since
∑r

i=1 Yi is negative binomially distributed,

P
( r∑
i=1

Yi = k
)

= 2−k−r
(
k + r − 1

k

)
.

Now since σ is independent of the Yi’s, and σ only takes odd values, conditioning on the value
of σ yields

P
(
σ +

σ−1∑
i=1

Yi = t
)

=

dt/2e∑
s=1

P(σ = 2s− 1)P
( 2s−1∑
i=1

Yi = t− 2s+ 1
)

=

dt/2e∑
s=1

(
4−s

2

s+ 1

(
2s

s

))(
2−t
(

t− 1

t− 2s+ 1

))
.

Plugging this into (2.1) and approximating asymptotically yields the desired formula.

Collisions are a renewal process, and the double collision counter Ct is related to τ in the usual
way: if τi are iid variables distributed like τ for i ∈ N, and Σi =

∑j
i=1 τi, then

Ct = sup{j > 0 : Σj < t}, or Ct = j when Σj < t < Σj+1.

That is, we run the particle Z until it returns to 0: this takes time τ , and we have just had a
collision. Now the system resets, and we wait again for Z to return, and so on. So the number of
collisions seen so far is the number of τ variables up to time t that we have seen.

It is natural to ask about collisions of random walks on arbitrary graphs G, or even arbitrary
discrete time Markov chains. As a simple example, we resolve the case of a pair of particles on the
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2m-cycle, m ≥ 1. (We assume the cycle has even length just to avoid particles jumping over each
other without colliding.) Let X1

t , X
2
t be simple random walks on Z /2mZ, with X1

0 = X2
0 = 0:

what is the distribution of the first collision time τ2m = inf{t > 0 : X1
t = X2

t }? While it is a bit
messy to determine the actual distribution, we can prove:

Proposition 2.4. The probability generating function of τ2m is given by

E[wτ2m ] =
w

2

[
1 +

m
(

1√
w
−
√

1
w − 1

)2

m− 1 +
(

1√
w
−
√

1
w − 1

)2m

]
. (2.2)

One can use the fact that the collision hitting times form a renewal process to obtain similar
formulas in the case X1

0 6= X2
0 .

Proof. We follow the same idea as in the proof of lemma 2.3: let Zt be the random walk on Z with
Z0 = 1 and step distribution P(Zt+1 − Zt = ±1) = 1/4, P(Zt+1 − Zt = 0) = 1/2, so that

τ2m
d
= B + (1−B) inf{t > 0 : Zt = 0 or m} ≡ B + (1−B)(1 + σm), (2.3)

where B is a Bernoulli(1/2) variable independent of everything. Thus τ2m is closely related to
the two-sided hitting time σm = first time to hit 0 or m for a random walk on Z. The distribution
of σm can be calculated by considering the clever martingale

Mt =
exp(rZt)

E exp(rZt)
=

er(Zt−1)

cosh(r/2)2t
.

Specifically, for any r > 0, {Mt, t ≥ 0} is a discrete time martingale with respect to itself, since
the increments of Z are independent variables. The second equality above comes from calculating
the expectation of the increments:

Eer∆Z =
1

4
er +

1

4
e−r +

1

2
= cosh(r/2)2.

Note that M0 = 1, and recall the well known fact that for a simple random walk St started
from 0,

P(St = −a|t = inf{s > 0 : Ss /∈ (−a, b)}) =
b

a+ b

for a, b > 0. Z is not a simple random walk, but the step distribution for Z is symmetric, and
Z takes steps ±1, so the same fact holds for Z. Thus by the optional stopping theorem,

1 = E[Mσm ] = E
[m− 1

m

1

er cosh(r/2)2σm
+

1

m

emr

er cosh(r/2)2σm

]
.

Doing some algebra, and substituting w = cosh(r/2)−2 ∈ (0, 1), yields

E[wσm ] =
m
(

1√
w
−
√

1
w − 1

)2

m− 1 +
(

1√
w
−
√

1
w − 1

)2m .

The result follows by plugging into the distributional equation (2.3).
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Note that finding the actual distribution of τ2m would involve taking a discrete inverse Laplace
transform of (2.2), which is a bit ugly! We can use (2.2) to explicitly compute some moments of
τ2m. Before we do so, we note that it is easy to directly compute the mean and variance of τ2m

when m = 1 or 2. Clearly τ2 ≡ 1, while τ4 is geometrically distributed with mean 2, since at each
step there is always probability 1/2 that the walkers jump to the same site on Z/4Z. When m ≥ 3,
there is no fixed probability of a collision at each step, so τ2m is not sub-exponential in this case,
and so its moments may not be well behaved. The next result confirms this intuition:

Corollary 2.5. Eτ2m = m for all m ≥ 1. Also, for m ≥ 3,Eτ2
2m =∞.

Proof. For any random variable X, derivatives of the probability generating function are related
to moments of X:

∂

∂w

∣∣∣
w=1

EwX =
∑
k≥1

∂

∂w

∣∣∣
w=1

P(X = k)wk

=
∑
k≥1

kP(X = k)

= EX,

and similarly,

∂2

∂2w

∣∣∣
w=1

EwX =
∑
k≥1

∂2

∂2w

∣∣∣
w=1

P(X = k)wk

=
∑
k≥1

k(k − 1)P(X = k)

=
∑
k≥1

k2P(X = k)−
∑
k≥1

kP(X = k)

= EX2 − EX.

Thus by direct computation in (2.2),

Eτ2m =
∂

∂w

∣∣∣
w=1

E[wτ2m ] = m,

Eτ2
2m =

∂2

∂w2

∣∣∣
w=1

E[wτ2m ] + Eτ2m =

{
6, m = 2

∞, m ≥ 3

Unlike the situation on Z, the expected collision time is finite, so we can get a sense of how fast
collisions are occuring. If Nt(m) is the number of collisions of two particles on Z /2mZ up to time
t, then standard theorems about renewal processes (e.g. see [7]) imply

Nt(m)

t
→ 1

m
a.s.

and
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ENt(m)

t
→ 1

m
.

Another consequence of the formula in proposition 2.4 comes from letting m → ∞, where we
expect to recover the behavior of two random walks on Z. The pointwise limit of Ewτ2m can be
directly calculated. For w ∈ (0, 1), z = 1√

w
∈ (1,∞), and

lim
z→1+

d

dz

(
z −

√
z2 − 1

)
= −∞.

It follows that

1√
w
−
√

1

w
− 1 < 1

for all w ∈ (0, 1), and thus

lim
m→∞

Ewτ2m =
w

2

[
1 +

( 1√
w
−
√

1

w
− 1
)2]

=
∞∑
n=1

(2n− 3)!!

2nn!
wn, (2.4)

where we have explicitly computed the series expansion of the limit. Recall the collision time τ
from lemma 2.3. To conclude that (2.4) is the probability generating function of τ , we must show:

Proposition 2.6. As m→∞, τ2m →d τ .

Proof. We must show that P(τ2m ≤ k) → P(τ ≤ k) for each k ∈ N, as m → ∞. Note that
probability that the random walk Zt (defined in the proof of proposition 2.4) exits the interval
[0,m] at m is 1

m , which converges to 0. Thus the random walk Zt on the cycle Z /mZ does not hit
the point m with probability m−1

m , and in this case the probability of hitting 0 in time at most k
is identical to the same probability for the corresponding walk on Z. In other words, for any fixed
k > 0, ∣∣∣P(τ2m ≤ k)− P(τ ≤ k)

∣∣∣ ≤ 1/m→ 0,

as desired.

Thus we have:

Corollary 2.7. The distribution of τ is explicitly given by

P(τ = T ) =
(2T − 3)!!

2TT !
.

(Note the convention N !! = 1 for N ≤ 0.)

The case of 3 particles already is significantly more complicated. Let X1
t , X

2
t , X

3
t be simple

random walks on Z as above, with X1
0 = −2a,X2

0 = 0, and X3
0 = 2b, with a, b ≥ 0. We are

interested in the first collision time

T (a, b) = inf{t > 0 : X1
t = X2

t or X2
t = X3

t }.

We can actually compute the expected value of T , which is finite:
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Proposition 2.8. ET (a, b) = 4ab.

Proof. It turns out that this process is naturally related to a hitting time of a simple random walk

on the hexagonal lattice. Let Ut =
X2

t−X1
t

2 , Vt =
X3

t−X2
t

2 , and let H = {(±1, 0), (0,±1), (±1,∓1)}
denote the hexagonal lattice edges in Z2, i.e. the usual lattice steps but with diagonals in one
direction. It is easy to check that U and V have joint transition probabilities

P
(

∆(U, V ) = w
)

= 1/8 for w ∈ H,

and

P
(

∆(U, V ) = 0
)

= 1/4,

where the increments

∆(U, V )
d
= (Ut+1, Vt+1)− (Ut, Vt).

are independent. It follows that T (a, b) is equal in distribution to the hitting time

τ(a, b) = inf{t > 0 : Wt ∈ ∂Q},

where Wt denotes the sleepy random walk (Ut, Vt),W0 = (a, b), and Q = {(x, y) ∈ Z2 : x, y ≥ 0}
(∂Q is the union of the positive x and y axes). Now, using theorem 3.5 in [13], the function
f : Q→ R given by

f(v) = Eτ(v)

is the minimal solution to the averaging equations

f(v) = 1 +
1

8

∑
w∈H

f(v + w) +
1

4
f(v), (2.5)

with the boundary conditions

f(v) = 0 for v ∈ ∂Q. (2.6)

It is easy to see that, writing v = (a, b) ∈ H, the function g(v) = 4ab1a>01b>0 is a solution to
(2.5) and (2.6), since g clearly satisfies the boundary conditions, and

1 +
1

8

∑
w∈H

g(v + w) +
1

4
g(v) =

1

4
(4ab) +

1

8

(
4(a+ 1)b+ 4(a− 1)b+ 4a(b+ 1)+

4a(b− 1) + 4(a− 1)(b+ 1) + 4(a+ 1)(b− 1)
)

= 1 + ab+ 3ab+
1

8
(4 · −2)

= 1 + 4ab− 1

= g(v).

To prove uniqueness, observe that for any two solutions g′, g′′ to the equations (2.5) and (2.6),
the function g′′ − g′ is harmonic on Q:
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1

6

∑
w∈H

(g′′(v + w)− g′(v + w)) = g′′(v)− 8− g′(v) + 8 = g′′(v)− g′(v).

Moreover, by (2.6), g′′ − g′ has boundary values 0, so since harmonic functions are determined
by their boundary values [12], g′′ − g′ ≡ 0, or g′′ = g′, as desired.

Alternative proof: Simply observe that

Mt = t+ (X2
t −X1

t )(X3
t −X2

t ) (2.7)

is a martingale (a straightforward calculation). By the optional stopping theorem,

EMτ(a,b) = E
[
τ + (X2

τ −X1
τ )(X3

τ −X2
τ )
]

= Eτ = 4ab. (2.8)

The formula for the expected value was guessed after doing some simulations of the hexagonal
walk process. It is tempting to think a simpler proof of this fact is possible: we have shown that
the expected hitting time is simply the product of the initial inter-distances X2

0 − X1
0 = 2a and

X3
0 −X2

0 = 2b.

The idea in the proof of proposition 2.8 generalizes to multiple random walks: given n random
walks {Xi

t} for 1 ≤ i ≤ n and η = (η1, η2, . . . , ηn) ∈ Zn satisfying 0 < η1 < η2 < · · · < ηn, set

τ(η) = inf{t > 0 : Xi
t = Xj

t , some i 6= j|Xi
0 = ηi for all i}

to be the first collision time given initial configuration η. Form the random vector

Wt =
(X2

t −X1
t

2
,
X3
t −X2

t

2
, . . . ,

Xn
t −Xn−1

t

2

)
∈ Zn−1,

which satisfies

||Wt+1 −Wt||1 ∈ {0, 1, 2, . . . , n− 1}

for all t ≥ 0. Suppose Hn are the possible steps Wt can take, not including the possible sleepy
step Wt+1 = Wt, which happens with probability 21−n; then just as in the proof of proposition 1.8,
the expected first collision time f(v) = Eτ(v) must solve the system of equations

f(v) = 1 +
1

|Hn|
∑
w∈Hn

f(w + v) + 21−nf(v),

with boundary conditions

f(v) = 0 for v ∈ ∂Cn−1,

where Cd is the positive orthant in Zd, Cd = {x1, x2, . . . , xd ≥ 0}. If one actually wanted to
solve this system in general, it would require determining exactly what the set Hn is: this may take
some work. For example, in the case n = 4 we have

H4 = {(±1, 0, 0), (0, 0,±1), (±1,∓1, 0), (0,±1,∓1), (0,±1, 0), (±1, 0,∓1), (±1,∓1,±1)}.
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Then, one would have to come up with a candidate solution for the above equations, and it
isn’t obvious how to do so. As we will see later, this framework for analyzing collisions is analagous
to the case for brownian motion: collisions of multiple particles in one dimension is equivalent to
a hitting time of a single high dimensional random walk, with skew transition probabilities, or a
non-trivial covariance matrix.

3 Biased walks

We now turn to the asymmetric case on Z. Consider two random walks X1
t , X

2
t on Z with biases

p1 and p2, respectively, i.e. P(∆Xi = 1) = pi for i = 1, 2. Start both walks from X1
0 = X2

0 = 0. We
aim to understand the stopping time

τp1,p2 = inf{t > 0 : X1
t = Xt

2} (3.1)

Consider the walk Zp1,p2,t given by

Zp1,p2,t = X1
t −X2

t , (3.2)

and let Z̃ be the non-sleepy version of Z, i.e. set

s =
p1q2

p1q2 + p2q1
, (3.3)

and

P(∆Z̃ = 1) = s, P(∆Z̃ = −1) = 1− s. (3.4)

(Here qi = 1− pi.) The key is to understand the stopping time

σs = inf{t > 0 : Z̃t = 0} (3.5)

given that Z̃0 = 1, and assuming s ≤ 1
2 . Unlike in the unbiased case s = 1

2 , σs has finite
expectation for s < 1

2 . To calculate the distribution of σs, note that on the event {σs = 2k+ 1} for

k ∈ N∪ {0}, Z̃ travels a Dyck path starting and ending at Z̃0 = Z̃2k = 1, and then takes a −1 step
from Z̃2k = 1 to Z̃2k+1 = 0. Thus

P(σs = 2k + 1) = sk(1− s)k+1Ck, (3.6)

where Ck = 1
k+1

(
2k
k

)
is the kth Catalan number. (As an aside, this offers a bijective proof of

the fact that ∑
k≥0

sk(1− s)k+1 1

k + 1

(
2k

k

)
= 1

for s ≤ 1
2 .) Some analysis yields the explicit formulas

Eσs =
1

1− 2s
, Eσ2

s =
1 + 2s− 4s2

(1− 2s)3
.
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4 The infinite collision property

Another take on the question of collisions is to try and get a result like proposition 2.1 on other
underlying graphs. That is, if we have two simple random walkers on a graph G, do they collide
infinitely often almost surely? Which graphs have this property? This is examined in depth in [1],
which we give a short account of now. Given a graph G, let X1, X2 be independent random walks
on G started from any vertex v ∈ G, and let Pv denote the law of this process. Just as in our
proposition 2.1, define

Z =
∞∑
t=0

1[X1
t = X2

t ].

We say G has the infinite collision property if

Pv(Z =∞) = 1 ∀v ∈ G,

and G has the finite collision property if

Pv(Z <∞) = 1 ∀v ∈ G.

The first important fact is a zero-one law:

(BPS proposition 2.1) If G is a recurrent graph, then Pv(Z =∞) ∈ {0, 1}. Also, we have either
Pv(Z =∞) = 0 for all v or Pv(Z =∞) = 1 for all v.

Surprisingly, graphs can be recurrent, and yet also have the finite collision property. This is one
of the motivations for the authors in [1]; see also [11]. Define the graph Comb(Z) to have vertices
Z×Z and edges

{{(x, n), (x,m)} : |m− n| = 1} ∪ {{(x, 0), (y, 0)} : |x− y| = 1}.

A variant on the comb graph is Comb(Z, α), for α > 0, which is defined as the induced subgraph
of Comb(Z) with vertex set {(x, y) : 0 ≤ y ≤ xα}. Note that the comb graphs are recurrent. The
comb graphs exhibit the desired phenomenon, and have a phase transition in terms of α. The main
result in [1] is:

(BPS theorems 1.6 & 1.8) If α ≤ 1, then Comb(Z, α) has the infinite collision property; and
if α > 1, then Comb(Z, α) has the finite collision property. Also, all the following graphs have the
infinite collision property: a critical Galton-Watson tree with finite variance conditioned to survive
forever; the incipient infinite cluster for critical percolation in dimension d ≥ 19; the uniform
spanning tree in Z2.

One of the keys to proving such theorems is a criterion in terms of the Greens function of the
graph G that determines whether G has the infinite collision property:

(BPS theorem 3.1) Let G be a recurrent graph with a distinguished vertex o, and let gA denote
the Green kernel of G with respect to a subset A ⊂ G. Let {Br}r be a strictly increasing sequence
of sets whose union is G. Suppose there exists C <∞ such that for all r,

gBr(x, x) ≤ CgBr(0, 0) ∀x ∈ Br.
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Then G has the infinite collision property.

This allows the authors to use analytic information about the Greens functions of some graphs,
like the Galton-Watson tree, to decide the collision property.

5 Collisions of brownian particles

Andrey Sarantsev’s treatment of the situation with multiple Brownian particles[15] is typical of
an approach to this problem. The set up is as follows: let W1,W2, . . . ,WN be standard Brownian
motions in one dimension, and for a continuous RN -valued process

X = (X1(t), . . . , XN (t)),

let pt = pX(t) denote the ranking permutation for the vector X, i.e. for every t ≥ 0 we have

Xpt(1) ≤ Xpt(2) ≤ · · · ≤ Xpt(N).

Then the process we seek to study satisfies the SDE

dXi(t) =
N∑
k=1

1[pt(k) = i](gkdt+ σkdWi(t)), i = 1, . . . , N, (5.1)

where gk ∈ R are the drift coefficients and σk ≥ 0 are the ‘diffusion’ coefficients. This is a very
appealing model, because it is like the particles ‘bounce off’ of each other when they collide: the
ith largest particle always has the same drift and diffusion coefficients. To prove that this process
exists and is unique – that is, (5.1) has a unique solution – it is necessary to assume no triple
collisions occur. Andrey is able to prove:

(S15 Theorem 1.4) If the sequence σ2
n is concave, i.e.

σ2
k+1 − σ2

k ≤ σ2
k − σ2

k−1, k = 2, . . . , N,

then with probability one, no triple collisions occur. Moreover, if the concavity condition fails
for some k, then there exists a time t > 0 such that there is a triple collision between particles with
ranks k − 1, k and k + 1 at time t.

This is a beautiful necessary and sufficient condition for triple collisions. The proof involves
studying a reflected Brownian motion in a high dimensional wedge. Specifically, just as we have in
section 2, Andrey defines the ‘gap process’

Zk(t) = Xk+1(t)−Xk(t), k = 1, . . . , N − 1,

and shows that the gap process is a reflected Brownian motion with explicit drift and diffusion
matrices given in terms of the gk and σk (pages 8-9). This process is then analyzed by reducing to
the two-dimensional wedge case, where Brownian processes are very well understood.
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