Stochastic abelian particle systems

Jacob Richey (Rényi)

Kutszem, September 2023

SSM (stochastic sandpile model) is a random particle processes on a graph

SSM (stochastic sandpile model) is a random particle processes on a graph

Integer 7 > 2 (threshold). Dynamics on a finite graph G:

e Configuration i : G — N2° p(v) = number of particles at v

SSM (stochastic sandpile model) is a random particle processes on a graph

Integer 7 > 2 (threshold). Dynamics on a finite graph G:

e Configuration i : G — N2° p(v) = number of particles at v
@ Pick v € G uniformly at random with n(v) > 7 (unstable site)

SSM (stochastic sandpile model) is a random particle processes on a graph

Integer 7 > 2 (threshold). Dynamics on a finite graph G:

e Configuration i : G — N2° p(v) = number of particles at v
@ Pick v € G uniformly at random with n(v) > 7 (unstable site)

@ Topple at v: 7 particles at v each step to a uniform random neighbor
of v, all independently.

e Write n — T,n (toppling operator)

Absorbing state phase transition & self organized criticality

Robust w.r.t. initial conditions, toppling rules; variants

Absorbing state phase transition & self organized criticality
Robust w.r.t. initial conditions, toppling rules; variants

Abelian property, site-wise representation, ‘chip firing’

Absorbing state phase transition & self organized criticality
Robust w.r.t. initial conditions, toppling rules; variants
Abelian property, site-wise representation, ‘chip firing’
Forest fires, earthquakes, avalanches

Hyperuniformity, power laws

Driven-dissipative/SSM markov chain:
@ Any(!) initial configuration on B, = [—n, n]¢ c Z¢
@ Perform SSM dynamics, only toppling sites in B,
© When all sites are stable (< 7 particles), add a single particle to B,
@ Return to step 2

Note: particles may step outside B,. No mass conservation!

Let G be any infinite vertex-transitive graph, u > 0 (particle density)
Start with n(v) ~ Poisson(u) independently over v € G

Topple every v at rate 1 (continuous time)

Let G be any infinite vertex-transitive graph, u > 0 (particle density)
Start with n(v) ~ Poisson(u) independently over v € G

Topple every v at rate 1 (continuous time)

Local fixation

An instance of SSM fixates if each site is toppled a finite number of times.
Otherwise, it stays active.

Let G be any infinite vertex-transitive graph, u > 0 (particle density)
Start with n(v) ~ Poisson(u) independently over v € G

Topple every v at rate 1 (continuous time)

Local fixation

An instance of SSM fixates if each site is toppled a finite number of times.
Otherwise, it stays active.

What is the probability of fixation? How does it depend on u?

For any particle density u, P(SSM(p) fixates) € {0, 1}.

Monotonicity

If SSM(p) fixates almost surely for some f, then it fixates almost surely
for /' < p.

Phase transition

There is a critical density pc = uc(G,) € [0, 7] satisfying

1 c
P(SSM () fixates) = {0’“ i #
y > e

Questions:
o At criticality?
@ Various critical densities

e Limiting/critical distribution of the particle configuration?

Questions:
o At criticality?
@ Various critical densities

e Limiting/critical distribution of the particle configuration?

Concrete problems:

Upper/lower bounds on pc?
Time to fixate on a finite set?

Order of the odometer function?

Mixing time?

For SSM on Z with threshold 7 = 2:

1
5§Mc<1

@ Lower bound: Podder, Rolla ‘20
@ Upper bound: Hoffman, Hu, R., Rizzolo ‘23

For SSM on Z with threshold 7 = 2:

1
5§Mc<1

@ Lower bound: Podder, Rolla ‘20
@ Upper bound: Hoffman, Hu, R., Rizzolo ‘23

Conjecture: for 7 =2, uc(Z?) < 1

Site-wise representation
Generate iid ‘instructions’ {&, j} for ve G and j >1

&v,j is uniform over {M,_,,, : w neighbor of v}, where

1(x); x ¢ {v,w}
M, sun(x)=4¢n(v)—1, x=v
nw)+1, x=w

Apply &, at the jth time a particle topples at site v.

To run the dynamics on a finite subset, we choose a (legal) sequence of
sites xi, ..., X, to topple:

n— Tx - Tyn.

Issue: what if different toppling sequences give different results?

To run the dynamics on a finite subset, we choose a (legal) sequence of
sites xi, ..., X, to topple:

n— Tx - Tyn.

Issue: what if different toppling sequences give different results?
v is stable for n if n(v) <t

If all v are stable, then we call i stable

If the result is stable, the order of topplings didn't matter!

Abelian property

Fix 1, and any (legal) toppling sequences T* = (T,,..., Ty,) and
TV =(T,,..., Ty,) such that T*n and T”7 are stable. Then T* is a
permutation of T7.

If the result is stable, the order of topplings didn't matter!

Abelian property

Fix 1, and any (legal) toppling sequences T* = (T,,..., Ty,) and
TV =(T,,..., Ty,) such that T*n and T”7 are stable. Then T* is a
permutation of T7.

Proof: 1) For unstable sites x and y, T, T,n = T, Tyn

If the result is stable, the order of topplings didn't matter!

Abelian property

Fix n, and any (legal) toppling sequences T* = (T,,..., Ty,) and
TV =(T,,..., Ty,) such that T*n and T”7 are stable. Then T* is a
permutation of T7.

Proof: 1) For unstable sites x and y, T, T,n = T, Tyn

2) Find yx = x1, swap T,, to the front:

T}’1 T Ty;<71 TX1 T,

Y+l

o T}’s77 =Ty T}’1 T Ty;<71 T,

Y41 '

.. Tysn

Repeat for all x;. Since T*n, TYn are stable, no unstable y's remain. [

Abelian property

Fix n, and any (legal) toppling sequences T* = (T, ..., Ty,) and
TY =(Ty,..., Ty,) such that T*n and T¥1n are stable. Then T* is a
permutation of T7.

Remark: no randomness here. Holds for any fixed realization of the stacks.
We can choose clever toppling sequences, as long as we fully stabilize.

The toppling sequence can even be chosen as a function of the stack
instructions.

ARW (activated random walk). Fix A > 0 (sleep rate). Dynamics:

Configuration : G — N=0U {s}
Particles are active or sleepy

Active particles perform simple random walk at rate 1

Sleepy particles (s) do not move

ARW (activated random walk). Fix A > 0 (sleep rate). Dynamics:

Configuration : G — N=0U {s}

Particles are active or sleepy

Active particles perform simple random walk at rate 1
Sleepy particles (s) do not move

Each active particle becomes sleepy at rate A

If n(v) > 2, all particles at v instantly become active

ARW is like SSM, but easier because of additional randomness
Same properties: SOC, phase transition, abelian

Interpolates between independent SRWs (A = 0) and IDLA (A = o0)

Critical density (¢ = (c()) for a.s. local fixation in ARW

Critical density (¢ = (c()) for a.s. local fixation in ARW

Selection of recent results:

e OnZ:
o (c(A) > 25 (Rolla, Sidoravicius ‘12)
o ((A) — 0 as A — 0 (Basu, Ganguly, Hoffman ‘15)

o (M) <1 for any A (Hoffman, R., Rolla ‘20)

Critical density (¢ = (c()) for a.s. local fixation in ARW

Selection of recent results:

e On Z:

o ((A) = 125 (Rolla, Sidoravicius ‘12)

e ((A\) — 0as A — 0 (Basu, Ganguly, Hoffman ‘15)
o (M) <1 for any A (Hoffman, R., Rolla ‘20)

e Onz9 d>2:
o ((N) <1 for A small (Forien, Gaudilliere, 22; Hu, '23)

@ Relaxation/mixing time (Bristiel, Salez '22; Levine, Liang ‘23)

Figure: Phase diagram for ARW on Z.

A =1 [RS "12] A
A=00 fprommmmmmemefe e mm- A=00 frrrmmmmccccccmcmnnnn=
" :
L] "
fixation ' :
[fixation '
! [HRR "20] !
] L]
L] n
N 1 [
-] n
L] L]
: activity :
1 L}
[BGH 15| . '
] n
activity | 9 '
(0,0) =1 (0,0) ‘ =1
Known Predicted

Rolla, Sidoravicius '12

ARW fixates almost surely on Z for { < ALH

Proof sketch: find 'traps’ for the particles to fall asleep in.

Rolla, Sidoravicius '12

ARW fixates almost surely on Z for { < ALH

Proof sketch: find 'traps’ for the particles to fall asleep in.

Use Ber(() initial condition, so we start with 0 or 1 particles per site

Rolla, Sidoravicius '12

ARW fixates almost surely on Z for { <)\L'H-

Proof sketch: find 'traps’ for the particles to fall asleep in.

Use Ber(() initial condition, so we start with 0 or 1 particles per site

Rolla, Sidoravicius, Zindy ‘19

Fix A > 0 and G = Z9. For any ergodic (active) initial configuration 7
with particle density ¢, ARW((, A) started from 7 fixates if { < (. and
stays active if { > (..

‘Critical density is universal’

Let x, = position of kth particle to the right of 0, k =1,2,...

Define the traps ay recursively:
@ ap = 0.

@ For k > 0: send a ghost particle out from x, ignoring sleep
instructions, until it hits a;_1.

@ a, = leftmost site to the right of ax_1 where the second to last
instruction seen by the ghost was a sleep instruction.
Particles follow the paths of their ghosts, except that they fall asleep in
the trap.

Note: an instruction is a sleep instruction with probability 1%\

t T T T T
@

T] Tt —t— 1
o :nl .n

Figure: A diagram from [RS '12], showing the first trap a; for the particle x;.

f] t +—t 1
0 9., lay O 9.

Figure: The trap a, for the particle x,, obtained recursively by exploring the stack
instructions.

Proof sketch: Trap setting succeeds if ax_1 < xx for all k € N.

Proof sketch: Trap setting succeeds if ax_1 < xx for all k € N.

On average, xx — xk—1 = ("t and ax — ax_1 = %

Proof sketch: Trap setting succeeds if ax_1 < xx for all k € N.

On average, xx — xk—1 = ("t and ax — ax_1 = %

By the LLN, x &~ k(72, and ax ~ k - 22

Proof sketch: Trap setting succeeds if ax_1 < xx for all k € N.
On average, xx — xk—1 = ("t and ax — ax_1 = %
By the LLN, x &~ k(72, and ax ~ k - 22

Thus if (< 1%\ xx > ay for all k large a.s.

Proof sketch: Trap setting succeeds if ax_1 < xx for all k € N.
On average, xx — xk—1 = ("t and ax — ax_1 = %
By the LLN, x &~ k(72, and ax ~ k - 22

Thus if ¢ < IJ%\ xx > ay for all k large a.s.

So P(fixation) > 0. By the 0-1 law, P(fixation) = 1. [

Basu, Ganguly, Hoffman, R. '17
Consider ARW on Z/nZ. For any A € (0,00] and ¢ < 2y,

stack instructions to fixate < Cnlog(n)?

with high probability as n — co for some C > 0.

The fixation speed depends on the initial condition: if all particles start at
the same site, it takes at least Cn3 instructions whp.

First step: gather log n particles at each of

/
\

n
log n

sites.

fr
[]
|

\ /
\ /
| //\
\\ -
— .

Focus on a single sub-interval.

m

How to adapt the traps for an interval?

Two-sided traps: ghosts start at 0, traps are set recursively at the
boundary. Procedure fails if the traps reach 0.

a1 T = k41 2 0 bpyr b1 =by
~— — _v_/
] Y,
Xj_1 X [

Figure: Setting traps ‘in both directions’ on an interval.

Internal erosion on an interval:

© Start with the interval Xo = [-m, m] N Z.

@ Start a simple random walker from 0, stopped when she hits a
boundary point B € 0X;.

© Remove the point B from Xp, to obtain Xi11 = X \ {B}.
@ Return to step 2

Internal erosion on an interval:

© Start with the interval Xo = [-m, m] N Z.

@ Start a simple random walker from 0, stopped when she hits a
boundary point B € 0X;.

© Remove the point B from Xp, to obtain Xi11 = X \ {B}.
@ Return to step 2

How large is the interval when the origin is eroded?

Idea: replace each segment [j — 1, /] and [—j, —j + 1] by an independent
Exponential(j) length of rope, connect them all together, and initialize by
lighting both ends on fire.

Properties of exponentials give a coupling between this process and the
erosion process. Key computation: for a, b > 0,

a
a+b

PO(hit b before — a) = = P(Exp(b) < Exp(a)).

(+ memoryless-ness)

Levine, Peres, '07
Let R(m) be the number of sites remaining when the origin is eroded.
Then

R(m) s\ 4

as m — oo, where Z ~ N(0,1).

Note: the number of remaining sites is O(m3/#) = o(m).

Issue: at each stage, one of the traps moves a random distance —

distributed as Geo(%) — not distance 1.

We are still able to couple with the rope process, but the exponentials
have random means. Many concentration estimates necessary.

Conclusion: the left and right side traps still shrink to 0 at the same rate
(up to lower order stuff). Two-sided trap setting succeeds for { < 1%\

	Results

