Stochastic abelian particle systems

Jacob Richey (Rényi)

Kutszem, September 2023

Integer $\tau \ge 2$ (threshold). Dynamics on a finite graph *G*:

• Configuration $\eta: G o \mathbb{N}^{\geq 0}$, $\eta(v) =$ number of particles at v

Integer $\tau \ge 2$ (threshold). Dynamics on a finite graph *G*:

- Configuration $\eta: G \to \mathbb{N}^{\geq 0}$, $\eta(v) =$ number of particles at v
- Pick $v \in G$ uniformly at random with $\eta(v) \ge \tau$ (unstable site)

Integer $\tau \ge 2$ (threshold). Dynamics on a finite graph *G*:

- Configuration $\eta: G \to \mathbb{N}^{\geq 0}$, $\eta(v) =$ number of particles at v
- Pick $v \in G$ uniformly at random with $\eta(v) \geq \tau$ (unstable site)
- Topple at ν: τ particles at ν each step to a uniform random neighbor of ν, all independently.
- Write $\eta \rightarrow T_{\nu}\eta$ (toppling operator)

Absorbing state phase transition & self organized criticality

Robust w.r.t. initial conditions, toppling rules; variants

Absorbing state phase transition & self organized criticality

Robust w.r.t. initial conditions, toppling rules; variants

Abelian property, site-wise representation, 'chip firing'

Absorbing state phase transition & self organized criticality

Robust w.r.t. initial conditions, toppling rules; variants

Abelian property, site-wise representation, 'chip firing'

Forest fires, earthquakes, avalanches

Hyperuniformity, power laws

Driven-dissipative/SSM markov chain:

- Any(!) initial configuration on $B_n = [-n, n]^d \subset \mathbb{Z}^d$
- ⁽²⁾ Perform SSM dynamics, only toppling sites in B_n
- **③** When all sites are stable ($< \tau$ particles), add a single particle to B_n
- Return to step 2

Note: particles may step outside B_n . No mass conservation!

Let G be any infinite vertex-transitive graph, $\mu > 0$ (particle density) Start with $\eta(v) \sim \text{Poisson}(\mu)$ independently over $v \in G$ Topple every v at rate 1 (continuous time) Let G be any infinite vertex-transitive graph, $\mu > 0$ (particle density)

Start with $\eta(v) \sim \mathsf{Poisson}(\mu)$ independently over $v \in G$

Topple every v at rate 1 (continuous time)

Local fixation

An instance of SSM *fixates* if each site is toppled a finite number of times. Otherwise, it *stays active*.

Let G be any infinite vertex-transitive graph, $\mu > 0$ (particle density)

Start with $\eta(v) \sim \mathsf{Poisson}(\mu)$ independently over $v \in G$

Topple every v at rate 1 (continuous time)

Local fixation

An instance of SSM *fixates* if each site is toppled a finite number of times. Otherwise, it *stays active*.

What is the probability of fixation? How does it depend on μ ?

0-1 law

For any particle density μ , $\mathbb{P}(SSM(\mu) \text{ fixates}) \in \{0, 1\}$.

Monotonicity

If SSM($\mu)$ fixates almost surely for some $\mu,$ then it fixates almost surely for $\mu'<\mu.$

Phase transition

There is a critical density $\mu_c = \mu_c(G, \tau) \in [0, \tau]$ satisfying

$$\mathbb{P}(\mathsf{SSM}(\mu) \; \mathsf{fixates}) = egin{cases} 1, \mu < \mu_c \ 0, \mu > \mu_c \end{cases}$$

Questions:

- At criticality?
- Various critical densities
- Limiting/critical distribution of the particle configuration?

Questions:

- At criticality?
- Various critical densities
- Limiting/critical distribution of the particle configuration?

Concrete problems:

- Upper/lower bounds on μ_c ?
- Time to fixate on a finite set?
- Order of the odometer function?
- Mixing time?

For SSM on \mathbb{Z} with threshold $\tau = 2$:

$$\frac{1}{2} \le \mu_{c} < 1$$

- Lower bound: Podder, Rolla '20
- Upper bound: Hoffman, Hu, R., Rizzolo '23

For SSM on \mathbb{Z} with threshold $\tau = 2$:

$$\frac{1}{2} \le \mu_{c} < 1$$

- Lower bound: Podder, Rolla '20
- Upper bound: Hoffman, Hu, R., Rizzolo '23

Conjecture: for au= 2, $\mu_c(\mathbb{Z}^2)<1$

Site-wise representation

Generate iid 'instructions' $\{\xi_{v,j}\}$ for $v \in G$ and $j \ge 1$ $\xi_{v,j}$ is uniform over $\{M_{v \to w} : w \text{ neighbor of } v\}$, where

$$M_{\nu \to w} \eta(x) = \begin{cases} \eta(x), & x \notin \{\nu, w\} \\ \eta(\nu) - 1, & x = \nu \\ \eta(w) + 1, & x = w \end{cases}$$

Apply $\xi_{v,j}$ at the *j*th time a particle topples at site *v*.

To run the dynamics on a finite subset, we choose a (legal) sequence of sites x_1, \ldots, x_r to topple:

$$\eta \to T_{x_r} \cdots T_{x_1} \eta.$$

Issue: what if different toppling sequences give different results?

To run the dynamics on a finite subset, we choose a (legal) sequence of sites x_1, \ldots, x_r to topple:

$$\eta \to T_{x_r} \cdots T_{x_1} \eta.$$

Issue: what if different toppling sequences give different results?

v is *stable* for η if $\eta(v) < \tau$

If all v are stable, then we call η stable

If the result is stable, the order of topplings didn't matter!

Abelian property

Fix η , and any (legal) toppling sequences $T^x = (T_{x_1}, \ldots, T_{x_r})$ and $T^y = (T_{y_1}, \ldots, T_{y_s})$ such that $T^x \eta$ and $T^y \eta$ are stable. Then T^x is a permutation of T^y .

If the result is stable, the order of topplings didn't matter!

Abelian property

Fix η , and any (legal) toppling sequences $T^{\times} = (T_{x_1}, \ldots, T_{x_r})$ and $T^y = (T_{y_1}, \ldots, T_{y_s})$ such that $T^{\times}\eta$ and $T^y\eta$ are stable. Then T^{\times} is a permutation of T^y .

Proof: 1) For unstable sites x and y, $T_x T_y \eta = T_y T_x \eta$

If the result is stable, the order of topplings didn't matter!

Abelian property

Fix η , and any (legal) toppling sequences $T^{\times} = (T_{x_1}, \ldots, T_{x_r})$ and $T^y = (T_{y_1}, \ldots, T_{y_s})$ such that $T^{\times}\eta$ and $T^y\eta$ are stable. Then T^{\times} is a permutation of T^y .

Proof: 1) For unstable sites x and y, $T_x T_y \eta = T_y T_x \eta$

2) Find $y_k = x_1$, swap T_{y_k} to the front:

$$T_{y_1} \cdots T_{y_{k-1}} T_{x_1} T_{y_{k+1}} \cdots T_{y_s} \eta = T_{x_1} T_{y_1} \cdots T_{y_{k-1}} T_{y_{k+1}} \cdots T_{y_s} \eta$$

Repeat for all x_i . Since $T^x \eta$, $T^y \eta$ are stable, no unstable y's remain.

Abelian property

Fix η , and any (legal) toppling sequences $T^x = (T_{x_1}, \ldots, T_{x_r})$ and $T^y = (T_{y_1}, \ldots, T_{y_s})$ such that $T^x \eta$ and $T^y \eta$ are stable. Then T^x is a permutation of T^y .

Remark: no randomness here. Holds for any fixed realization of the stacks.

We can choose clever toppling sequences, as long as we fully stabilize.

The toppling sequence can even be chosen as a function of the stack instructions.

ARW (activated random walk). Fix $\lambda > 0$ (sleep rate). Dynamics:

- Configuration $\eta: G \to \mathbb{N}^{\geq 0} \cup \{s\}$
- Particles are *active* or *sleepy*
- Active particles perform simple random walk at rate 1
- Sleepy particles (s) do not move

ARW (activated random walk). Fix $\lambda > 0$ (sleep rate). Dynamics:

- Configuration $\eta: G \to \mathbb{N}^{\geq 0} \cup \{s\}$
- Particles are *active* or *sleepy*
- Active particles perform simple random walk at rate 1
- Sleepy particles (s) do not move
- Each active particle becomes sleepy at rate λ
- If $\eta(v) \ge 2$, all particles at v instantly become active

ARW is like SSM, but easier because of additional randomness Same properties: SOC, phase transition, abelian

Interpolates between independent SRWs ($\lambda = 0$) and IDLA ($\lambda = \infty$)

Critical density $\zeta_c = \zeta_c(\lambda)$ for a.s. local fixation in ARW

Critical density $\zeta_c = \zeta_c(\lambda)$ for a.s. local fixation in ARW

Selection of recent results:

• On \mathbb{Z} :

- $\zeta_c(\lambda) \ge \frac{\lambda}{1+\lambda}$ (Rolla, Sidoravicius '12)
- $\zeta_c(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$ (Basu, Ganguly, Hoffman '15)
- $\zeta_c(\lambda) < 1$ for any λ (Hoffman, R., Rolla '20)

Critical density $\zeta_c = \zeta_c(\lambda)$ for a.s. local fixation in ARW

Selection of recent results:

- On \mathbb{Z} :
 - $\zeta_c(\lambda) \ge \frac{\lambda}{1+\lambda}$ (Rolla, Sidoravicius '12)
 - $\zeta_c(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$ (Basu, Ganguly, Hoffman '15)
 - $\zeta_c(\lambda) < 1$ for any λ (Hoffman, R., Rolla '20)
- On \mathbb{Z}^d , $d \geq 2$:
 - $\zeta_c(\lambda) < 1$ for λ small (Forien, Gaudilliere, '22; Hu, '23)

• Relaxation/mixing time (Bristiel, Salez '22; Levine, Liang '23)

Figure: Phase diagram for ARW on \mathbb{Z} .

Rolla, Sidoravicius '12

ARW fixates almost surely on \mathbb{Z} for $\zeta < \frac{\lambda}{\lambda+1}$.

Proof sketch: find 'traps' for the particles to fall asleep in.

Rolla, Sidoravicius '12

ARW fixates almost surely on \mathbb{Z} for $\zeta < \frac{\lambda}{\lambda+1}$.

Proof sketch: find 'traps' for the particles to fall asleep in.

Use $Ber(\zeta)$ initial condition, so we start with 0 or 1 particles per site

Rolla, Sidoravicius '12

ARW fixates almost surely on \mathbb{Z} for $\zeta < \frac{\lambda}{\lambda+1}$.

Proof sketch: find 'traps' for the particles to fall asleep in.

Use $Ber(\zeta)$ initial condition, so we start with 0 or 1 particles per site

Rolla, Sidoravicius, Zindy '19

Fix $\lambda > 0$ and $G = \mathbb{Z}^d$. For any ergodic (active) initial configuration η with particle density ζ , ARW(ζ , λ) started from η fixates if $\zeta < \zeta_c$ and stays active if $\zeta > \zeta_c$.

'Critical density is universal'

Let x_k = position of *k*th particle to the right of 0, k = 1, 2, ...

Define the traps a_k recursively:

- *a*₀ = 0.
- For k > 0: send a ghost particle out from x_k , ignoring sleep instructions, until it hits a_{k-1} .
- $a_k =$ leftmost site to the right of a_{k-1} where the second to last instruction seen by the ghost was a sleep instruction.

Particles follow the paths of their ghosts, except that they fall asleep in the trap.

Note: an instruction is a sleep instruction with probability $\frac{\lambda}{1+\lambda}$

Figure: A diagram from [RS '12], showing the first trap a_1 for the particle x_1 .

Figure: The trap a_2 for the particle x_2 , obtained recursively by exploring the stack instructions.

On average, $x_k - x_{k-1} = \zeta^{-1}$ and $a_k - a_{k-1} = \frac{1+\lambda}{\lambda}$.

On average, $x_k - x_{k-1} = \zeta^{-1}$ and $a_k - a_{k-1} = \frac{1+\lambda}{\lambda}$.

By the LLN, $x_k \approx k\zeta^{-1}$, and $a_k \approx k \cdot \frac{1+\lambda}{\lambda}$.

On average, $x_k - x_{k-1} = \zeta^{-1}$ and $a_k - a_{k-1} = \frac{1+\lambda}{\lambda}$. By the LLN, $x_k \approx k\zeta^{-1}$, and $a_k \approx k \cdot \frac{1+\lambda}{\lambda}$.

Thus if $\zeta < \frac{\lambda}{1+\lambda}$, $x_k > a_k$ for all k large a.s.

On average, $x_k - x_{k-1} = \zeta^{-1}$ and $a_k - a_{k-1} = \frac{1+\lambda}{\lambda}$. By the LLN, $x_k \approx k\zeta^{-1}$, and $a_k \approx k \cdot \frac{1+\lambda}{\lambda}$. Thus if $\zeta < \frac{\lambda}{1+\lambda}$, $x_k > a_k$ for all k large a.s. So $\mathbb{P}(\text{fixation}) > 0$. By the 0-1 law, $\mathbb{P}(\text{fixation}) = 1$.

Basu, Ganguly, Hoffman, R. '17

Consider ARW on $\mathbb{Z}/n\mathbb{Z}$. For any $\lambda \in (0,\infty]$ and $\zeta < \frac{\lambda}{1+\lambda}$,

stack instructions to fixate $< Cn \log(n)^2$

with high probability as $n \to \infty$ for some C > 0.

The fixation speed depends on the initial condition: if all particles start at the same site, it takes at least Cn^3 instructions whp.

Focus on a single sub-interval.

How to adapt the traps for an interval?

Two-sided traps: ghosts start at 0, traps are set recursively at the boundary. Procedure fails if the traps reach 0.

Figure: Setting traps 'in both directions' on an interval.

Internal erosion on an interval:

- Start with the interval $X_0 = [-m, m] \cap \mathbb{Z}$.
- Start a simple random walker from 0, stopped when she hits a boundary point B ∈ ∂X_t .
- Solution Remove the point *B* from X_0 , to obtain $X_{t+1} = X_t \setminus \{B\}$.
- Return to step 2

Internal erosion on an interval:

- Start with the interval $X_0 = [-m, m] \cap \mathbb{Z}$.
- Start a simple random walker from 0, stopped when she hits a boundary point B ∈ ∂X_t.
- Solution Remove the point *B* from X_0 , to obtain $X_{t+1} = X_t \setminus \{B\}$.
- Return to step 2

How large is the interval when the origin is eroded?

Idea: replace each segment [j - 1, j] and [-j, -j + 1] by an independent Exponential(j) length of rope, connect them all together, and initialize by lighting both ends on fire.

Properties of exponentials give a coupling between this process and the erosion process. Key computation: for a, b > 0,

$$\mathbb{P}^{0}(\text{hit } b \text{ before } -a) = rac{a}{a+b} = \mathbb{P}(\mathsf{Exp}(b) < \mathsf{Exp}(a)).$$

(+ memoryless-ness)

Levine, Peres, '07

Let R(m) be the number of sites remaining when the origin is eroded. Then

$$\frac{\mathsf{R}(m)}{m^{3/4}} \to_d \left(\frac{8}{3}\right)^{1/4} \sqrt{|Z|},$$

as $m \to \infty$, where $Z \sim N(0, 1)$.

Note: the number of remaining sites is $O(m^{3/4}) = o(m)$.

Issue: at each stage, one of the traps moves a random distance – distributed as $\text{Geo}(\frac{1+\lambda}{\lambda})$ – not distance 1.

We are still able to couple with the rope process, but the exponentials have random means. Many concentration estimates necessary.

Conclusion: the left and right side traps still shrink to 0 at the same rate (up to lower order stuff). Two-sided trap setting succeeds for $\zeta < \frac{\lambda}{1+\lambda}$.