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1 Introduction & Results

Consider the following coupon collector process on N = {0, 1, . . .}. Let (Xi)i∈N be iid with suffi-
ciently light tailed distribution. This note focuses on any stretched exponential distribution, i.e.
for some α > 0, v ∈ N,

P(X = v) = pv = Cα exp(−α
√
v), (1.1)

though similar results should hold for a large class of sufficiently light-tailed distributions. Let
Vn be the set of values ‘collected’ by the Xi up to Xn, i.e.

Vn = {X1, X2, . . . , Xn}, (1.2)

viewed as a set. For example, if X1 = 1, X2 = 4, X3 = 1, X4 = 5, then V4 = {1, 4, 5}. We seek
a limit description of statistics like

Ln =
∑
v∈Vn

√
v =

∑
v∈N

√
v1{Xi = v for some i ∈ [n]} :=

∑
v∈N

√
vAnv . (1.3)

Note that L is not a sum of independent random variables, since the indicators Anv are not
independent (though they are only ‘midly’ dependent for large n.) Our main aim in this note is
to show that statistics like Ln are close in distribution to an iid sum in such a way that we can
do computations. The strategy is is to couple with the following iid process. For n = 1, 2, . . . and
v ∈ N, let Ãnv be independent Bernoullis with

P(Ãnv = 1) = E[Anv ] = 1− (1− pv)n. (1.4)

The Ã’s are associated to their own coupon collector process Ṽn

Ṽn = {v ∈ N : Ãnv = 1}, (1.5)

and corresponding statistic

L̃n =
∑
v∈Ṽn

√
v =

∑
v∈N

√
vÃnv . (1.6)

Our main result says that V and Ṽ are asymptotically identical in distribution. Here dTV is
the total variation between random variables Y, Z, given by

dTV (Y,Z) = inf
π
π{(y, z) : y 6= z}, (1.7)

1



where the infemum is taken over all couplings π of X and Y , i.e. all probability measures
π = (πY , πZ) on Ω× Ω with marginal distributions Y and Z.

Theorem 1.1. For any δ > 0, n1−δdTV (Vn, Ṽn)→ 0 as n→∞.

This says that the distribution of V is well appoximated by that of Ṽ . Thus we obtain that
any statistics like L and L̃ built from V or Ṽ in the same way satisfy the same total variation
bound. We do not get a bound on something like E[L − L̃] for free, because on the set where L
and L̃ disagree under the optimal coupling π they could be very large. Conveniently, we work with
a coupling π that has V and Ṽ independent conditionally on containing unusually large values, so
we can show:

Corollary 1.2. Let π be the coupling defined in Section 3. For any γ ≥ 1, any δ > 0 and all
sufficiently large n,

Eπ
[
|Ln − L̃n|γ

]
≤ n−1+δ. (1.8)

In particular,
∣∣∣E[Lγn]− E[L̃γn]

∣∣∣ = on(1).

We can use this corollary to do near exact computations for L using L̃. The expectations are
the same for both: we have

ELn = EL̃n =
∑
v

√
v(1− (1− pv)n) =

2

3α3
(log n)3 + o((log n)3). (1.9)

The variance is order (log n)4:

Var L̃n =
∑
v

Var(
√
vÃv) ∼

∑
v≥ε(logn)2

v ·Var(Ãv) = Θ((log n)4), (1.10)

and by the corollary VarLn = Var L̃n + o(1). But Theorem 1.1 allows us to get much more
precise distributional information. Let vn = 1

α2 (log n)2, and decompose Ln as

Ln =
∑
v≤vn

√
v +

∑
v≥vn

√
vAnv −

∑
v<vn

√
v(Anv )c =

3

2
v3/2n + L+

n − L−n . (1.11)

Applying the Lindeberg-Feller CLT to L̃+ and L̃−, using Theorem 1.1 along with Lemmas 2.1
and 2.2 gives the following description.

Corollary 1.3. There exist constants µ± and σ± such that we have the distributional convergences

L±n − µ±(log n)2

σ± log n
→d N (0, 1). (1.12)

In other words, we have the approximate distributional equality

Ln ≈d
3

2α3
(log n)3 + (µ+ − µ−)(log n)2 + Z log n (1.13)

where Z is normal with mean 0 and variance (σ+)2 + (σ−)2. In particular, we have the almost
sure convergences
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Ln
(log n)3

→a.s.
3

2α2
(1.14)

and

Ln − 3
2α2 (log n)3

(log n)2
→a.s. µ

+ − µ− (1.15)

(I write the approximate equality 1.13 this way for brevity – a precise statement would be
that the total variation between the LHS and RHS converges to 0 as n → ∞.) The constants are
somewhat explicit, depending only on α, in terms of some integrals:

µ+ = lim
n→∞

EL+
n

(log n)2
=

1

α

∫ ∞
0

q(z) dz (1.16)

µ− = lim
n→∞

EL−n
(log n)2

=
1

α

∫ ∞
0

1− q(−z) dz (1.17)

(σ+)2 = lim
n→∞

VarL+
n

(log n)2
=

1

α

∫ ∞
0

q(z)(1− q(z)) dz (1.18)

(σ−)2 = lim
n→∞

VarL−n
(log n)2

=
1

α

∫ ∞
0

q(−z)(1− q(−z)) dz (1.19)

where for z ∈ R,

q(z) = lim
n→∞

EAnvn+z logn = exp

(
−Cα exp

(
1

2
α2z

))
(1.20)

(I omit the proof, which is easy – just compute the expectations and variances of L+ and L−,
then apply the CLT – but involves a lot of annoying error terms, since it requires truncating the
sums at `n and rn. The bulk contribution to those expectations and variances come from values
v = vn + z log n for fixed z. If z = ±ωn(1) then the contribution of v to L± is lower order.)

Aside: It appears that µ+ = µ− for exactly one value of α, namely α ≈ 1.371. Is there any
significance of this value of α?

2 Preliminaries

Define the maximum variables

Mn = maxVn, M̃n = max Ṽn. (2.1)

We start with two lemmas that describe the tail of the pv distribution. Recall that pv ∼
exp(−α

√
v). In a nutshell, Vn contains all values up to just under 1

α2 (log n)2, and no values just
above that point. Note that at that value we have pα−2(logn)2 ∼ n−1, i.e. the expected number of
occurrences of values v ≈ α−2(log n)2 among the Xi’s is Θ(1).

Lemma 2.1. As n→∞,

P({1, 2, . . . , bα−2(log n)2 − (log n)3/2c} 6⊂ Vn)→ 0. (2.2)

and similarly for Ṽn.
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Proof. Write `n = bα−2(log n)2 − (log n)3/2c, and note the Taylor approximation√
`n ≈ α−1 log n− 1

2
α(log n)1/2, (2.3)

where the approximation symbol means we have upper and lower bounds by constants. By a
union bound and some algebra (and ignoring irrelevant constants),

P([`n] 6⊂ Vn) ≤
∑
v≤`n

P(v /∈ Vn) ≤ (log n)2(1− p`n)n ≤ (log n)2 exp(−Cα exp(α2(log n)1/2))→ 0.

(2.4)

We chose (log n)3/2 here so that 1) the contribution of the segment [`n, α
−2(log n)2] is smaller

order than the bulk – for g(v) =
√
v, the bulk is order (log n)3, while values in that interval

contribute at most
√

(log n)2 · (log n)3/2 = (log n)5/2 – and 2) the above probability converges to 0.

Lemma 2.2. As n→∞,

P(Mn ≥ α−2(log n)2 + (log n)3/2)→ 0 (2.5)

and similarly for M̃n.

Proof. Similar to Lemma 2.1. Let rn = bα−2(log n)2 + (log n)3/2c. Here we need to sum the tail of
our stretched exponential, which is do-able by comparing with an integral:

P(X > v) =
∑
w>v

pw ≈
√
v exp(−α

√
v). (2.6)

By a Taylor approximation for rn, and more algebra with exponentials,

P(Mn > rn) = 1− P(X ≤ rn)n = O(log n exp(−
√

log n))→ 0. (2.7)

We will also need the following basic fact about binomial distributions:

Fact 2.3. Let B ∼ Binomial(n, p), B′ ∼ Binomial(n, q), and B′′ ∼ Binomial(m, q). Then

dTV (B,B′′) ≤ dTV (B,B′) + dTV (B′, B′′) ≤ n|p− q|+ |n−m|q (2.8)

In particular, there exists a coupling between B and B′′ such that P(B 6= B′) ≤ n|p−q|+|n−m|q.

These crude bounds from coupling B,B′, and B′′ in the obvious way (i.e. using the same
Bernoullis for all three), then using Markov’s inequality to bound P(B 6= B′) or P(B 6= B′′).
(These may even be the correct orders for the TV if |p − q| and |n −m| are small, I can’t find a
reference but surely it’s written up somewhere.)
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3 Coupling

The remainder of this note is devoted to showing that Ṽn and Vn are close in distribution, which
implies that Ln and L̃n are also close in distribution, since one applies the same function to get
from Vn to Ln as to get from Ṽn to L̃n. To do so, we explicitly couple Vn and Ṽn on the same
probability space, and show that the two models agree with high probability. The construction
works by ‘adding values backwards from ∞.’ Fix n, and for v > 1, let

Sv = {t ≤ n : Xt = v} (3.1)

be the set of indices in [n] taking value v and let

S̃v = pv percolation on [n], (3.2)

i.e. t ∈ S̃v with probability pv for each t and v all independently. Note that Vn is a measurable
function of (Sv)v, namely

Vn = {v : Sv 6= ∅}, (3.3)

and similarly for Ṽn. We now define the coupling between the sequences (Sv) and (S̃v), i.e. a
construction of the pair ((Sv)v, (S̃v)v) on a single probability space, so that the marginals agree
with the definitions just given. The coupling is constructed recursively as follows:

� Start with Sv = S̃v = ∅ for v > rn (recall rn = bα−2(log n)2 + (log n)3/2c as in the proof of
Lemma 2.2) with probability P(Mn < rn). With the complementary probability, generate the
full sequence (Sv) conditionally on Mn ≥ rn and generate (S̃v) independently. (The latter
case won’t matter because it has small probability.)

� Given all the sets Sw for w > v, generate Sv by adding each i ∈ n \
⋃
w>v Sw to Sv indepen-

dently with probability

p′v =
pv

p0 + p1 + · · ·+ pv
(3.4)

Note that conditionally on (Sw)w>v, |Sv| has Binomial(n−
∣∣⋃

w>v Sw
∣∣ , p′v) distribution.

� Use the coupling guaranteed by 2.3 to generate |S̃v| using |Sv|, so that |S̃v| has Binomial(n, pv)
distribution. Then if |S̃v| = |Sv|, set S̃v = Sv, and otherwise choose the indices for S̃v
independently.

Note that this coupling has the correct marginals, i.e. the Sv and S̃v constructed this way give
rise to the same distribution for Vn and Ṽn described at the beginning of this note. We now turn
to the central proposition:

Proposition 3.1. The above coupling has the property that Sv = S̃v for all v ≥ `n with high
probability as n→∞.

This will enable us to do computations for Ln using L̃n instead, since Vn and Ṽn are obtained
in the same way from (Sv)v and (S̃v)v, respectively.
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Proof. Let Pv = P[·|(Sw)w>v] denote the conditional expectation given the history of the coupling.
The definition of the coupling and Fact 2.3 give

Pv[Sv 6= S̃v] ≤ P(Mn > rn) + (p′v − pv)n+

∣∣∣∣∣ ⋃
w>v

Sw

∣∣∣∣∣ pv. (3.5)

Some algebra shows p′v − pv ≤ C
√
`np

2
`n

for v ≥ `n. Also, observe that

E

∣∣∣∣∣ ⋃
w>v

Sw

∣∣∣∣∣ = n
∑
w>v

pw ≤ Cn
√
`np`n . (3.6)

Note also that p2`n ≤ n−2+δ for any δ > 0 and n sufficiently large. Taking expectations in 3.5,

applying a union bound over the 2(log n)3/2 values v ∈ [`n, rn],

P(Sv 6= S̃v for some v ≥ `n) ≤ Cn(log n)5/2p2`n → 0. (3.7)

Putting everything together:

Theorem 3.2 (1.1). dTV (Vn, Ṽn) ≤ n−1+δ for any δ > 0 as n→∞.

Proof. Proposition 3.1 shows that Vn and Ṽn can be coupled to agree with high probability for
all values v larger than `n, while Lemma 2.1 shows that they also agree with high probability
(even without coupling) for all values v ≤ `n (since they always contain the latter values with high
probability).
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