Asymptotics for a geometric coupon collector process on N

Jacob Richey

March 29, 2023

1 Introduction & Results

Consider the following coupon collector process on $\mathbb{N} = \{0, 1, \ldots\}$. Let $(X_i)_{i \in \mathbb{N}}$ be iid with sufficiently light tailed distribution. This note focuses on any stretched exponential distribution, i.e. for some $\alpha > 0, v \in \mathbb{N}$,

$$
\mathbb{P}(X = v) = p_v = C_\alpha \exp(-\alpha \sqrt{v}),\tag{1.1}
$$

though similar results should hold for a large class of sufficiently light-tailed distributions. Let V_n be the set of values 'collected' by the X_i up to X_n , i.e.

$$
V_n = \{X_1, X_2, \dots, X_n\},\tag{1.2}
$$

viewed as a set. For example, if $X_1 = 1, X_2 = 4, X_3 = 1, X_4 = 5$, then $V_4 = \{1, 4, 5\}$. We seek a limit description of statistics like

$$
L_n = \sum_{v \in V_n} \sqrt{v} = \sum_{v \in \mathbb{N}} \sqrt{v} 1\{X_i = v \text{ for some } i \in [n]\} := \sum_{v \in \mathbb{N}} \sqrt{v} A_v^n.
$$
 (1.3)

Note that L is not a sum of independent random variables, since the indicators A_v^n are not independent (though they are only 'midly' dependent for large n.) Our main aim in this note is to show that statistics like L_n are close in distribution to an iid sum in such a way that we can do computations. The strategy is is to couple with the following iid process. For $n = 1, 2, \ldots$ and $v \in \mathbb{N}$, let \widetilde{A}_v^n be independent Bernoullis with

$$
\mathbb{P}(\widetilde{A}_v^n = 1) = \mathbb{E}[A_v^n] = 1 - (1 - p_v)^n.
$$
 (1.4)

The \widetilde{A} 's are associated to their own coupon collector process \widetilde{V}_n

$$
\widetilde{V_n} = \{ v \in \mathbb{N} : \widetilde{A}_v^n = 1 \},\tag{1.5}
$$

and corresponding statistic

$$
\widetilde{L_n} = \sum_{v \in \widetilde{V_n}} \sqrt{v} = \sum_{v \in \mathbb{N}} \sqrt{v} \widetilde{A}_v^n.
$$
\n(1.6)

Our main result says that V and \tilde{V} are asymptotically identical in distribution. Here d_{TV} is the total variation between random variables Y, Z , given by

$$
d_{TV}(Y, Z) = \inf_{\pi} \pi \{ (y, z) : y \neq z \},\tag{1.7}
$$

where the infemum is taken over all couplings π of X and Y, i.e. all probability measures $\pi = (\pi_Y, \pi_Z)$ on $\Omega \times \Omega$ with marginal distributions Y and Z.

Theorem 1.1. For any $\delta > 0$, $n^{1-\delta} d_{TV}(V_n, \widetilde{V_n}) \to 0$ as $n \to \infty$.

This says that the distribution of V is well appoximated by that of \tilde{V} . Thus we obtain that any statistics like L and \tilde{L} built from V or \tilde{V} in the same way satisfy the same total variation bound. We do not get a bound on something like $\mathbb{E}[L - \widetilde{L}]$ for free, because on the set where L and L disagree under the optimal coupling π they could be very large. Conveniently, we work with a coupling π that has V and \tilde{V} independent conditionally on containing unusually large values, so we can show:

Corollary 1.2. Let π be the coupling defined in Section [3.](#page-4-0) For any $\gamma \geq 1$, any $\delta > 0$ and all sufficiently large n,

$$
\mathbb{E}_{\pi}\left[|L_n - \widetilde{L}_n|^{\gamma}\right] \le n^{-1+\delta}.\tag{1.8}
$$

In particular, \vert $\mathbb{E}[L_n^{\gamma}] - \mathbb{E}[\widetilde{L}_n^{\gamma}] \Big| = o_n(1).$

We can use this corollary to do near exact computations for L using \widetilde{L} . The expectations are the same for both: we have

$$
\mathbb{E}L_n = \mathbb{E}\widetilde{L}_n = \sum_v \sqrt{v}(1 - (1 - p_v)^n) = \frac{2}{3\alpha^3} (\log n)^3 + o((\log n)^3).
$$
 (1.9)

The variance is order $(\log n)^4$:

$$
\operatorname{Var}\widetilde{L}_n = \sum_v \operatorname{Var}(\sqrt{v}\widetilde{A}_v) \sim \sum_{v \ge \epsilon (\log n)^2} v \cdot \operatorname{Var}(\widetilde{A}_v) = \Theta((\log n)^4),\tag{1.10}
$$

and by the corollary $\text{Var } L_n = \text{Var } \widetilde{L}_n + o(1)$. But Theorem [1.1](#page-1-0) allows us to get much more precise distributional information. Let $v_n = \frac{1}{\alpha^2} (\log n)^2$, and decompose L_n as

$$
L_n = \sum_{v \le v_n} \sqrt{v} + \sum_{v \ge v_n} \sqrt{v} A_v^n - \sum_{v < v_n} \sqrt{v} (A_v^n)^c = \frac{3}{2} v_n^{3/2} + L_n^+ - L_n^-.
$$
\n(1.11)

Applying the Lindeberg-Feller CLT to \tilde{L}^+ and \tilde{L}^- , using Theorem [1.1](#page-1-0) along with Lemmas [2.1](#page-2-0) and [2.2](#page-3-0) gives the following description.

Corollary 1.3. There exist constants μ^{\pm} and σ^{\pm} such that we have the distributional convergences

$$
\frac{L_n^{\pm} - \mu^{\pm} (\log n)^2}{\sigma^{\pm} \log n} \to_d \mathcal{N}(0, 1).
$$
\n(1.12)

In other words, we have the approximate distributional equality

$$
L_n \approx_d \frac{3}{2\alpha^3} (\log n)^3 + (\mu^+ - \mu^-)(\log n)^2 + Z \log n
$$
\n(1.13)

where Z is normal with mean 0 and variance $(\sigma^+)^2 + (\sigma^-)^2$. In particular, we have the almost sure convergences

$$
\frac{L_n}{(\log n)^3} \to_{a.s.} \frac{3}{2\alpha^2} \tag{1.14}
$$

and

$$
\frac{L_n - \frac{3}{2\alpha^2} (\log n)^3}{(\log n)^2} \to_{a.s.} \mu^+ - \mu^-
$$
\n(1.15)

(I write the approximate equality 1.13 this way for brevity – a precise statement would be that the total variation between the LHS and RHS converges to 0 as $n \to \infty$.) The constants are somewhat explicit, depending only on α , in terms of some integrals:

$$
\mu^{+} = \lim_{n \to \infty} \frac{\mathbb{E}L_n^{+}}{(\log n)^2} = \frac{1}{\alpha} \int_0^{\infty} q(z) dz
$$
\n(1.16)

$$
\mu^{-} = \lim_{n \to \infty} \frac{\mathbb{E}L_n^{-}}{(\log n)^2} = \frac{1}{\alpha} \int_0^{\infty} 1 - q(-z) \, dz \tag{1.17}
$$

$$
(\sigma^+)^2 = \lim_{n \to \infty} \frac{\text{Var}\, L_n^+}{(\log n)^2} = \frac{1}{\alpha} \int_0^\infty q(z)(1 - q(z))\, dz \tag{1.18}
$$

$$
(\sigma^{-})^2 = \lim_{n \to \infty} \frac{\text{Var } L_n^-}{(\log n)^2} = \frac{1}{\alpha} \int_0^\infty q(-z)(1 - q(-z)) dz \tag{1.19}
$$

where for $z \in \mathbb{R}$,

$$
q(z) = \lim_{n \to \infty} \mathbb{E} A_{v_n + z \log n}^n = \exp\left(-C_\alpha \exp\left(\frac{1}{2}\alpha^2 z\right)\right)
$$
 (1.20)

(I omit the proof, which is easy – just compute the expectations and variances of L^+ and L^- , then apply the CLT – but involves a lot of annoying error terms, since it requires truncating the sums at ℓ_n and r_n . The bulk contribution to those expectations and variances come from values $v = v_n + z \log n$ for fixed z. If $z = \pm \omega_n(1)$ then the contribution of v to L^{\pm} is lower order.)

Aside: It appears that $\mu^+ = \mu^-$ for exactly one value of α , namely $\alpha \approx 1.371$. Is there any significance of this value of α ?

2 Preliminaries

Define the maximum variables

$$
M_n = \max V_n, \quad \widetilde{M_n} = \max \widetilde{V_n}.
$$
\n(2.1)

We start with two lemmas that describe the tail of the p_v distribution. Recall that $p_v \sim$ we start with two lemmas that describe the tan of the p_v distribution. Recall that $p_v \sim$
exp($-\alpha\sqrt{v}$). In a nutshell, V_n contains all values up to just under $\frac{1}{\alpha^2}(\log n)^2$, and no values just above that point. Note that at that value we have $p_{\alpha^{-2}(\log n)^2} \sim n^{-1}$, i.e. the expected number of occurrences of values $v \approx \alpha^{-2} (\log n)^2$ among the X_i 's is $\Theta(1)$.

Lemma 2.1. As $n \to \infty$,

$$
\mathbb{P}(\{1, 2, \dots, \lfloor \alpha^{-2} (\log n)^2 - (\log n)^{3/2} \rfloor\} \not\subset V_n) \to 0.
$$
 (2.2)

and similarly for $\widetilde{V_n}$.

Proof. Write $\ell_n = \lfloor \alpha^{-2} (\log n)^2 - (\log n)^{3/2} \rfloor$, and note the Taylor approximation

$$
\sqrt{\ell_n} \approx \alpha^{-1} \log n - \frac{1}{2} \alpha (\log n)^{1/2},\tag{2.3}
$$

where the approximation symbol means we have upper and lower bounds by constants. By a union bound and some algebra (and ignoring irrelevant constants),

$$
\mathbb{P}([\ell_n] \not\subset V_n) \le \sum_{v \le \ell_n} \mathbb{P}(v \notin V_n) \le (\log n)^2 (1 - p_{\ell_n})^n \le (\log n)^2 \exp(-C_\alpha \exp(\alpha^2 (\log n)^{1/2})) \to 0.
$$
\n(2.4)

We chose $(\log n)^{3/2}$ here so that 1) the contribution of the segment $[\ell_n, \alpha^{-2}(\log n)^2]$ is smaller we chose $(\log n)^{\gamma}$ here so that 1) the contribution of the segment $[\ell_n, \alpha \pmod{n}]$ is smaller
order than the bulk – for $g(v) = \sqrt{v}$, the bulk is order $(\log n)^3$, while values in that interval contribute at most $\sqrt{(\log n)^2} \cdot (\log n)^{3/2} = (\log n)^{5/2}$ – and 2) the above probability converges to 0.

Lemma 2.2. As $n \to \infty$,

$$
\mathbb{P}(M_n \ge \alpha^{-2} (\log n)^2 + (\log n)^{3/2}) \to 0 \tag{2.5}
$$

and similarly for $\widetilde{M_n}$.

Proof. Similar to Lemma [2.1.](#page-2-0) Let $r_n = \lfloor \alpha^{-2} (\log n)^2 + (\log n)^{3/2} \rfloor$. Here we need to sum the tail of our stretched exponential, which is do-able by comparing with an integral:

$$
\mathbb{P}(X > v) = \sum_{w > v} p_w \approx \sqrt{v} \exp(-\alpha \sqrt{v}).
$$
\n(2.6)

By a Taylor approximation for r_n , and more algebra with exponentials,

$$
\mathbb{P}(M_n > r_n) = 1 - \mathbb{P}(X \le r_n)^n = O(\log n \exp(-\sqrt{\log n})) \to 0.
$$
 (2.7)

 \Box

We will also need the following basic fact about binomial distributions:

Fact 2.3. Let $B \sim Binomial(n, p)$, $B' \sim Binomial(n, q)$, and $B'' \sim Binomial(m, q)$. Then

$$
d_{TV}(B, B'') \le d_{TV}(B, B') + d_{TV}(B', B'') \le n|p - q| + |n - m|q \tag{2.8}
$$

In particular, there exists a coupling between B and B'' such that $\mathbb{P}(B \neq B') \leq n|p-q|+|n-m|q$.

These crude bounds from coupling B, B' , and B'' in the obvious way (i.e. using the same Bernoullis for all three), then using Markov's inequality to bound $\mathbb{P}(B \neq B')$ or $\mathbb{P}(B \neq B'')$. (These may even be the correct orders for the TV if $|p-q|$ and $|n-m|$ are small, I can't find a reference but surely it's written up somewhere.)

3 Coupling

The remainder of this note is devoted to showing that \widetilde{V}_n and V_n are close in distribution, which implies that L_n and L_n are also close in distribution, since one applies the same function to get from V_n to L_n as to get from V_n to L_n . To do so, we explicitly couple V_n and V_n on the same probability space, and show that the two models agree with high probability. The construction works by 'adding values backwards from ∞ .' Fix n, and for $v > 1$, let

$$
S_v = \{ t \le n : X_t = v \}
$$
\n(3.1)

be the set of indices in $[n]$ taking value v and let

$$
\widetilde{S}_v = p_v \text{ percolation on } [n],\tag{3.2}
$$

i.e. $t \in \widetilde{S}_v$ with probability p_v for each t and v all independently. Note that V_n is a measurable function of $(S_v)_v$, namely

$$
V_n = \{v : S_v \neq \emptyset\},\tag{3.3}
$$

and similarly for V_n . We now define the coupling between the sequences (S_v) and (\widetilde{S}_v) , i.e. a construction of the pair $((S_v)_v,(\tilde{S}_v)_v)$ on a single probability space, so that the marginals agree with the definitions just given. The coupling is constructed recursively as follows:

- Start with $S_v = \tilde{S}_v = \emptyset$ for $v > r_n$ (recall $r_n = \lfloor \alpha^{-2} (\log n)^2 + (\log n)^{3/2} \rfloor$ as in the proof of Lemma [2.2\)](#page-3-0) with probability $\mathbb{P}(M_n < r_n)$. With the complementary probability, generate the full sequence (S_v) conditionally on $M_n \geq r_n$ and generate (S_v) independently. (The latter case won't matter because it has small probability.)
- Given all the sets S_w for $w > v$, generate S_v by adding each $i \in n \setminus \bigcup_{w>v} S_w$ to S_v independently with probability

$$
p'_{v} = \frac{p_{v}}{p_{0} + p_{1} + \dots + p_{v}}
$$
\n(3.4)

Note that conditionally on $(S_w)_{w>v}$, $|S_v|$ has Binomial $(n - \bigcup_{w>v} S_w |, p'_v)$ distribution.

Use the coupling guaranteed by [2.3](#page-3-1) to generate $|\widetilde{S}_v|$ using $|S_v|$, so that $|\widetilde{S}_v|$ has Binomial (n, p_y) distribution. Then if $|\widetilde{S}_v| = |S_v|$, set $\widetilde{S}_v = S_v$, and otherwise choose the indices for \widetilde{S}_v independently.

Note that this coupling has the correct marginals, i.e. the S_v and \widetilde{S}_v constructed this way give rise to the same distribution for V_n and V_n described at the beginning of this note. We now turn to the central proposition:

Proposition 3.1. The above coupling has the property that $S_v = \tilde{S}_v$ for all $v \geq \ell_n$ with high probability as $n \to \infty$.

This will enable us to do computations for L_n using \widetilde{L}_n instead, since V_n and \widetilde{V}_n are obtained in the same way from $(S_v)_v$ and $(\tilde{S}_v)_v$, respectively.

Proof. Let $\mathbb{P}_v = \mathbb{P}[\cdot | (S_w)_{w>v}]$ denote the conditional expectation given the history of the coupling. The definition of the coupling and Fact [2.3](#page-3-1) give

$$
\mathbb{P}_{v}[S_{v} \neq \widetilde{S}_{v}] \leq \mathbb{P}(M_{n} > r_{n}) + (p'_{v} - p_{v})n + \left| \bigcup_{w > v} S_{w} \right| p_{v}.
$$
\n(3.5)

Some algebra shows $p'_v - p_v \leq C$ √ $\overline{\ell_n} p_{\ell_n}^2$ for $v \geq \ell_n$. Also, observe that

$$
\mathbb{E}\left|\bigcup_{w>v} S_w\right| = n \sum_{w>v} p_w \le Cn\sqrt{\ell_n} p_{\ell_n}.
$$
\n(3.6)

Note also that $p_{\ell_n}^2 \leq n^{-2+\delta}$ for any $\delta > 0$ and n sufficiently large. Taking expectations in [3.5,](#page-5-0) applying a union bound over the $2(\log n)^{3/2}$ values $v \in [\ell_n, r_n],$

$$
\mathbb{P}(S_v \neq \widetilde{S}_v \text{ for some } v \geq \ell_n) \leq Cn(\log n)^{5/2} p_{\ell_n}^2 \to 0. \tag{3.7}
$$

 \Box

Putting everything together:

Theorem 3.2 [\(1.1\)](#page-1-0). $d_{TV}(V_n, V_n) \le n^{-1+\delta}$ for any $\delta > 0$ as $n \to \infty$.

Proof. Proposition [3.1](#page-4-1) shows that V_n and $\widetilde{V_n}$ can be coupled to agree with high probability for all values v larger than ℓ_n , while Lemma [2.1](#page-2-0) shows that they also agree with high probability (even without coupling) for all values $v \leq \ell_n$ (since they always contain the latter values with high probability). \Box