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‘Geometry and Imagination’ (Conway, Doyle, Gilman, Thurston)

Which way did the bicycle go?



Q: Given a ‘snapshot’ of a random process, what can be determined?

Starting/ending point?

Most/least visited points?

Step distribution/generator?

Properties of the underlying graph?
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Warmup: simple random walk on Z.

Problem: Run until the range has size n, then guess the starting point.
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Warmup: simple random walk on Z.

Problem: Run until the range has size n, then guess the starting point.

Which was the most likely starting point?



A: They’re all equally likely!

Re-index SRW by record times, compute explicitly.

OR: last vertex visited by SRW on the ring is uniform.
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Consider an infection spreading on the d-regular tree, d ≥ 3

The infection starts from site v∗ = ‘patient zero’

Infected sites can infect neighbors (with a speed limit)

Observer sees all infected sites at a fixed (large) time

Classical example: SI (susceptible/infected)

The infection is spread by a random algorithm known to the observer

Observer makes their best guess for patient zero using a single snapshot
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Gt = set of infected sites at time t

Maximum likelihood estimator

For any set A ⊂ Td ,

v̂MLE (A) := argmax
v∈ω

P(G v
t = A),

where G v
t is an independent copy of Gt started from v

Think of v̂MLE = v̂MLE (Gt) as a random variable

P(G v
t = A) = L(v ,A) is called the (quenched) ‘likelihood’

Detection probability

The observer correctly identifies the source with probability

P(v̂MLE (Gt) = v∗)



Motivation: protecting user anonymity in a computer network

Goals for the rumor/infection spreading algorithm:

Spreading: spread to many sites

Obfuscation: minimize the detection probability for patient zero

Multiple observations: obfuscate even if observer has > 1
independent observations

Local spreading (new): spread to all sites near patient zero
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Previous results: SI model, rumor centrality

Theorem (Shah, Zaman, ’10)

Consider the SI spreading model on the d-regular tree for d ≥ 3. The
detection probability is bounded away from 0 as t → ∞.

Fast spread and local spread, but no obfuscation.

Similar results for SI model on random trees.



New class of random spreading algorithms: adaptive diffusions

vst = virtual source at time t

Every two time units, the virtual source either stays put or moves to a
neighboring site

When the virtual source moves, it chooses uniformly among the d − 1
options away from v∗

Gt is a ball of radius t/2 centered at vst at even times t

Characterized by transition probabilities for the virtual source











Spreading

For adaptive diffusion,

|Gt | = Nt =
1

d − 2
(d − 1)t/2.

deterministically at even times t. (Order-optimal spreading)

Obfuscation

P(v̂MLE = v∗) =


Θ(N−1

t ) perfect obfuscation

Θ(N−γ
t ) polynomial obfuscation

o(1) weak obfuscation

Θ(1) no obfuscation



SI: good spread and local spread, no obfuscation. [Shah, Zaman ’10]

Adaptive diffusion (Fanti, Kairouz, Oh, Viswanath ’15)

Let G = d-regular tree. There exists an adaptive diffusion algorithm that
achieves perfect obfuscation:

P(v̂MLE = v∗) = Θ(N−1
t )

Pf sketch: Choose transition probabilities for the virtual source so that it is
uniformly distributed over a ball
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Local spreading?

Definition

The local spread Rt is the radius of the largest ball centered at v∗ and
contained in Gt .

The adaptive diffusion algorithm that achieves perfect obfuscation has
constant order local spread, Rt = Θ(1) – no local spread!
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Spreading/obfuscation trade-off [Racz, R. ’18]

Consider any adaptive diffusion with polynomial obfuscation of order
γ ∈ (0, 1), i.e.

P(v̂MLE = v∗) = O(N−γ
t ).

Then the average local spreading is bounded from above:

E[Rt ] ≤ (1− γ)
t

2
+ O(log t).

Obfuscation and local spreading are inversely linked.



The trade-off is essentially tight:

Spreading/obfuscation trade-off [Racz, Richey ’18]

For every γ ∈ (0, 1), there exists an adaptive diffusion with both
polynomial obfuscation of order γ,

P(v̂MLE = v∗) = O(N−γ
t ),

and order optimal local spreading

E[Rt ] ≥ (1− γ)
t

2
.



Suppose the observer has access to k > 1 independent snapshots {G i
t}ki=1

of the diffusion started from the same source v∗.

vs1

vs2v∗



Two independent observations (Racz, Richey ’18)

Suppose the observer has two iid adaptive diffusion snapshots G 1
t and G 2

t

started from the same source v∗. For any t,

P(v̂MLE = v∗) ≥ d − 1

d
· 2
t
.

Moreover, there exists a protocol such that for any t,

P(v̂MLE = v∗) ≤ d − 1

d
· 7
t
.

Only weak obfuscation now!



It gets worse:

Three or more independent observations (Racz, Richey ’18)

Suppose the observer has k ≥ 3 iid snapshots G i
t , i ∈ [k] started from the

same source v∗. For any t,

P(v̂MLE = v∗) ≥ 1− d exp

(
−(d − 2)2

2d2
k

)
.

No obfuscation!



Proof: Pick any three virtual sources and draw the paths between them.

vs1

vs3

vs2
v̂

When the three virtual sources lie in different sub-trees away from the
root, there will be a unique intersection point v̂ .



Necessary condition for obfuscation under multiple observations

Simple estimator: guess a green vertex

vs1

vs2v∗



Question

Does there exist a spreading algorithm that achieves order-optimal
spreading and polynomial obfuscation given ≥ 2 observations?

Should look at algorithms that have order-optimal local spreading:

P(v̂MLE = v∗) ≥ E

[∣∣∣ k⋂
i=1

G i
t

∣∣∣−1
]
,

RHS is large if local spread is typically small

Also, need more randomness: adaptive diffusion is given by the path of a
single particle (the virtual source). Too symmetrical!



Simple random walk on Z2, run for 5 · 106 steps.



Previous results: Brownian burgler, aka BM conditioned on local times
(Warren, Yor ‘98)

Where did the Brownian particle go: given local time of BM on a sphere
(Pemantle, Peres, Pitman, Yor ’00)

Theorem

Let d ≥ 3, and consider Brownian motion in Rd run for time 1.
Given the occupation measure of the path projected onto the sphere, you
can recover the range and the endpoint with probability 1.

Conjecture

In dimension d = 2, the range cannot be recovered.
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SRW in Zd

Q: where is the starting point?



SRW in Zd

A: there!



Rt = range of SRW up to time t, started from 0 ∈ Zd

Definition

An estimator v̂ is a function

v̂ : (Ω,Ξ) → Zd ,

where Ω is the space of simple random walk trajectories up to time t and
v̂(ω) ∈ ω for every ω, and Ξ is uniform(0, 1) independent of everything.

Example: v̂(ω) = uniform random closest point to the center of mass of ω.

Definition

For v ∈ Zd and ω ∈ Ω, the likelihood of (v , ω) is

L(v , ω) = P(Rv = ω),

where Rv is an independent copy of R started from v .
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How to measure the strength of an estimator?

Definition

The detection probability of an estimator v̂ is

Detect(v̂) = P(v̂ = 0).

Definition

For v ∈ Zd and ω ∈ Ω, the quenched likelihood ratio of (v , ω) is

Ratio(v , ω) =
L(v , ω)∑
u∈ω L(u, ω)

,

and the annealed likelihood ratio of an estimator v̂ is

Ratio(v̂) =

∫
Ω
Ratio(v̂(ω), ω)dP(ω).



Theorem (Hoffman, R. ‘19)

The following hold for SRW in Zd as t → ∞.

i . For d = 1,

Detect(v̂MLE ) = Θ(t−1/2).

ii . For d = 2,

Ratio(v̂MLE ,R) →p 0.

iii . For d ∈ {3, 4, 5, 6}, there exists an estimator v̂ such that

Detect(v̂) ≥ Θ(t−cd )

for some cd ∈ (0, 1), and cd = 2
d+2 for d = 5, 6.

iv . For d ≥ 7, there exists an estimator û such that

Detect(v̂) = Θ(1).



Conjecture

Detect(v̂MLE ) =

{
o(1), d = 2

Θ(1), d ≥ 5



Quenched detection result on a d-regular tree:

Theorem (Ray, R., 22+)

The following holds for SRW on the d-regular tree. There exists an
estimator v̂ such that: for all ϵ > 0 there exists δ > 0 and a sequence of
sets At ⊂ Ωt such that lim inft P(Rt ∈ At) ≥ 1− ϵ, and

lim inf
t

min
ωt∈At

Ratio(v̂(ωt), ωt) > δ.

A similar result holds for SRW on a random d-regular graph on [n], run up
to time t = n1−γ for any γ > 0.
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Todos:

· Biased RW on Zd

· Performance of ‘longest path’ estimator for transient RW’s

· Good estimator for Z3?



Proof ideas:

1 Get rid of the ‘middle’ of the range, by bounding long returns.

2 Infer chronological info using ‘cut points.’
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2 Infer chronological info using ‘cut points.’



Ingredients:

1 Long cycles: return probabilities / self-intersection exponents (Lawler)

2 A cut time for X is a time s ∈ [0, t] such that

X[0,s) ∩ X(s,t] = ∅

If s is a cut time, Xs is called a cut point.

Theorem (James, Peres, ’96)

In dimension d ≥ 3, there are infinitely many cut times. In dimension
d ≥ 5, cut times have positive density.
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Cutpoints are totally ordered (by their cut times).

Given all the cut points, find the ‘first’ and ‘last’ ones, pick uniformly from
their small components.

Problem: not all ‘divider’ points are cut points!

Figure: The three red ‘divider’ points can’t all be cut points.

Need more information about how cutpoints are distributed.
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Thanks!


