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1 The sock process

Start with 2n socks in a laundry basket. Socks come in pairs of 2 (mine do, anyways). Draw one
sock at a time uniformly at random and without replacement, laying the drawn socks on the bed.
When the second sock from a pair is drawn, fold them together and put that pair away. Set Xk =
number of socks on the bed after the kth draw. Then X0 = X2n = 0. What does the process Xk

look like?

Actually, we will consider a generalization of this process. Fix an integer l ≥ 2, and suppose we
draw uniformly at random from ln objects, divided into n groups of l. Once all objects of a single
group have been drawn, they are removed. So the case l = 2 is the sock process. Interestingly,
the sock process – centered and scaled – converges to a Brownian bridge, which can be proved by
looking at an auxilary martingale. But this approach doesn’t seem to work for other values of l,
and it is not obvious how to prove a similar limit result in that case.

Set

Xk = number of un-grouped objects after the kth draw (1.1)

Yk = number of groups removed after the kth draw (1.2)

We supress the parameters n and l. Then

Xk = k − lYk. (1.3)

To determine the natural scaling of Xk, we need to understand the scale of EXk. Note that

EYk =

n∑
j=1

P(every member of group j drawn by time k) (1.4)

= n · P(every member of group 1 drawn by time k) (1.5)

= n ·
(
ln−l
k−l
)(

ln
k

) (1.6)

= n · (k)l
(ln)l

, (1.7)

where (m)i = m(m− 1) · · · (m− 1 + i) is the usual falling factorial. Thus

EXk = k − (ln)
(k)l
(ln)l

(1.8)

≈ k − (ln)
kl

llnl
(1.9)

= k
(

1−
( k
ln

)l−1)
, (1.10)

where the approximation is assuming k, n → ∞ with k/n ∈ (0, 1). Thus, Xk approximately
looks like a scaled version of f(t) = t(1− tl−1).
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Figure 1: An instance of the sock process with l = 2 and n = 500, along with the theoretical
expectation.

To determine the proper scaling, we also need the variance of Xk. By similar reasoning, we
have

EY 2
k = EYk + (n2 − n)

(
ln−2l
k−2l

)(
ln
k

) (1.11)

= n · (k)l
(ln)l

+ (n2 − n)
(k)2l

(ln)2l
. (1.12)

Thus

EX2
k = k2 − 2klEYk + l2EY 2

k (1.13)

= k2 − (2kl − l2) · n · (k)l
(ln)l

+ l2(n2 − n)
(k)2l

(ln)2l
, (1.14)

which leads to

Var(Xk) = l2
(
n · (k)l

(ln)l
+ (n2 − n) · (k)2l

(ln)2l
− n2 (k)2

l

(ln)2
l

)
(1.15)

≈ l2n
(

(k/ln)l + (n− 1)(k/ln)2l − n(k/ln)2l
)

(1.16)

= l2n(k/ln)l(1− (k/ln)l). (1.17)

Thus, for k a fixed proportion of n, Var(Xk) ∼ n. This strongly suggests the scaled process

Z
(n)
t =

1

l
√
n

(
Xblntc − EXblntc

)
(1.18)
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Figure 2: An instance of the process Z
(n)
t with l = 2 and n = 5000.

for t ∈ (0, 1), and the limiting object

“Zt = lim
n→∞

Z
(n)
t ” (1.19)

which satisfies

EZt = 0,Var(Zt) = tl(1− tl) (1.20)

looks like a time-scaled Brownian bridge. (The quotes are there because the limit Z is technically
a limit of measures on C[0, 1]: this will take some extra work.) The covariance be computed directly
via the same ideas as for the variance. We have

E[XkXm] = km− l(kYm +mYk) + l2E[YkYm]. (1.21)

Using Yk =
∑

i 1{Gi(k)}, where Gi(k) is the event that group i has been removed by the kth

draw,

EYkYm = EYk∧m + n(n− 1)P(G1(k) ∩G2(m)). (1.22)

The crucial calculation is

P(G2(m)|G1(k)) =

(
ln−2l
m−2l

)(
ln−l
m−l
) =

(m− l)l
(ln− l)l

. (1.23)

Combining all of this, and approximating asymptotically with k = lns,m = lnt, one obtains

Cov(Zs, Zt) = (s ∧ t)l − sltl. (1.24)

Thus, to show that Zt1/l is a Brownian bridge, it suffices to show that Zt (exists and) is a
continuous Gaussian process. It doesn’t seem like it will be too difficult to show that Zt exists and
is continuous, but it is not clear why Z should be Gaussian. (One can relate the marginals of Z(n)
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to something that looks almost like a negative-binomial variable, but because the socks are drawn
without replacement it isn’t any typical discrete random variable. The idea would be to show that
the distribution is close enough to something like a negative binomial, which is known to converge
to normal when the parameters go to infinity.)

Question 1.1. Does Znt converge to a (time scaled) Brownian bridge as n→∞?

One can show that the marginal distribution of X is given by

P(Xk = m) = 2m
(

n

(k −m)/2

)(
n− (k −m)/2

m

)/(2n

k

)
. (1.25)

To show that the limit is Brownian, these probabilities should converge to the Gaussian density
when n,m, k →∞, as k = 2nt,m = nx(?). To analyze the asymptotics, a useful formula is(

N

cN

)
=

1√
2π

1√
c(1− c)

c−c(1− c)−(1−c) 1√
N

(1.26)

for N →∞, c ∈ (0, 1).

Note: The case l = 2 is special in that Xk is a Markov process with respect to itself, with
transition probabilities

P(Xk+1 = Xk + 1|Xk) = 1− Xk

2n− k
, (1.27)

P(Xk+1 = Xk − 1|Xk) =
Xk

2n− k
. (1.28)

Thus

E[Xk+1|Xk] = 1 +Xk(1−
2

2n− k
). (1.29)

One can use this to show that

Mk =
2n(2n− 1)

(2n− k − 1)(2n− k − 2)
Xk − 2n · k + 1

2n− k − 2
(1.30)

=
2n

2n− k − 2

(
(2n− 1)Xk

(2n− k − 1)
− k − 1

)
(1.31)

is a martingale with respect to itself.
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2 The coupon collector process

Consider the classical coupon collector setup: we draw repeatedly from [n] with replacement, and

wait for the first time when every element has been drawn at least once. Set X
(n)
k to be the

number of different types of coupons seen after the kth draw, and let τ (n) = min{t : X
(n)
t = n}.

The starting point is to compute the expectation of τ , which is straighforward: we can write
(suppressing notation)

τ = σ1 + σ2 + · · ·+ σn, (2.1)

where σi is the time it takes to get i coupons, after getting an i−1st one. The σi are exponentially
distributed, with means Eσi = n

n−i+1 . Thus Eτ = nHn, where Hn =
∑n

i=1
1
i ≈ log n.

Because the σ’s are exponential, one can show that with high probability τ < Cn log n for a
universal constant C. So, what does the process Xk typically look like, for 1 ≤ k ≤ Cn log n? For
example, what is EXk? It should be an increasing function of k with EX0 = 0 and EXn logn ≈ n.

Note that

Xk =

n∑
j=1

1{coupon j drawn by time k}, (2.2)

and the probability of drawing any single coupon by time k is 1− (1− 1/n)k. Thus

EXk = n

(
1−

(
1− 1

n

)k)
. (2.3)

Alternatively, since X is a sub-martingale, it is natural to normalize X to be a martingale. Note
that

E[Xk+1|Xk] =
Xk

n
·Xk +

(
1− Xk

n

)
(Xk + 1) (2.4)

= 1 +
n− 1

n
·Xk. (2.5)

One can use this to check that

Mk = −k +Xk +
1

n

k−1∑
j=1

Xj (2.6)

is martingale (with respect to itself), with M0 = 0. Thus

0 = EMk =⇒ EXk = k − 1

n

k−1∑
j=1

EXj . (2.7)

The recursion ak = k − 1
n ·
∑k−1

j=1 aj , a0 = 0 can be solved explicitly: the solution is

ak =

k−1∑
j=0

(
k

j + 1

)
n−j(−1)j =

nk − (n− 1)k

nk−1
, (2.8)
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Figure 3: An instance of the process 1
nX

(n)
k with n = 100 and 1 ≤ k ≤ 100 log 100 ≈ 461.

which matches the formula for EXk given above.

Setting k = αn log n yields the asymptotic formula

EXk = n

(
1−

(
1− 1

n

)αn logn
)
≈ n(1− n−α). (2.9)

Applying the optional stopping theorem to M at τ yields the interesting identity

0 = EMτ = −Eτ + EXτ +
1

n
E
τ−1∑
j=1

Xj =⇒ n2(Hn − 1) = E
τ−1∑
j=1

Xj . (2.10)

To compute the second moment, note that the probability that two distinct coupons are collected
by time k is

P(coupons i and j drawn by time k) = 1− 2

(
1− 1

n

)k
+

(
1− 2

n

)k
. (2.11)

Thus

EX2
k = E

 n∑
j=1

1{coupon j drawn by time k}

2

(2.12)

=
n∑
j=1

P (coupon j drawn by time k) +
∑
i 6=j

P (coupons i and j drawn by time k) (2.13)

= EXk + (n2 − n)

(
1− 2

(
1− 1

n

)k
+

(
1− 2

n

)k)
(2.14)
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Figure 4: An instance of the process Z
(n)
α with n = 106. Note that 106 log(106) ≈ 1.4× 107, which

is around where the process stops looking like a Brownian bridge, as the variance is becoming
extremely small.

= n2

(
1− 2

(
1− 1

n

)k
+

(
1− 2

n

)k)
+ n

((
1− 1

n

)k
−
(

1− 2

n

)k)
(2.15)

Setting k = αn log n yields

EX2
k ≈ n2(1− n−α)2 + n1−α(1− n−α). (2.16)

(Alternatively, using the second-order identity

E[X2
k+1|Xk] = X2

k

(
1− 2

n

)
+Xk

(
2− 1

n

)
+ 1, (2.17)

one can show that

Nk = k +X2
k +

2

n

k−1∑
j=1

X2
j −

(
2− 1

n

) k−1∑
j=0

Xj (2.18)

is a martingale, and recover the second moment via a recursion.)

The variance is

Var(Xk) ≈ n(n−α − n−2α) ≈ n1−α. (2.19)

It is natural to consider the scaled process

Znα =
Xbαn lognc − n(1− n−α)

n(1−α)/2
, (2.20)

where α ∈ (0,∞). Of course, most of the action is taking place in α ∈ (0, 1).
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Question 2.1. Is it true that Znα , α ∈ (0, 1) converges in distribution to a Brownian bridge process
as n→∞?

2.1 Generalized coupon collector

Consider a coupon collector process on N: draw iid random variables Vi from a fixed distribution
F on N, say

F =
∑
n∈N

pnδn. (2.21)

Then let Zn = # of coupons collected by time n, i.e.

Zn = #{Vi : i ∈ [n]}. (2.22)

Question 2.2. What is the limiting behavior of Zn?

It should be tightly concentrated around CF log n – how tightly? And what is CF ?

Question 2.3. What is the distribution of Wn = {Vi : i ∈ [n]}?

How close is it to Poisson process? (And what Poisson process? With values pn, and some
reduced intensity?)

Question 2.4. What is the distribution of Wτn, where τn is the first time that n is collected?

A similar martingale idea still works in this scenario: namely,

Rn = Zn −
n−1∑
j=1

gF (Vn) (2.23)

is a martingale (with respect to the natural filtration), where for a finite subset A ⊂ N,

gF (A) =
∑
n/∈A

pn (2.24)

is the probability of not selecting a new coupon at stage n, given that Vn−1 = A. The OST
yields

E

Tn−1∑
j=1

gF (Wj)

 = n− 1, (2.25)

where Tn is the first time t that Zt = n; and also

EZSm = 1 + E

Sm−1∑
j=1

gF (Wj)

+ 1, (2.26)

where Sm is the first time t that Wt ⊃ [m]. One can also check that

Z2
n −

n−1∑
j=1

(2Zj + 1)gF (Wj) (2.27)
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is a martingale – does this yield anything useful?

An interesting identity:

P(τn < τm) = P(V1, V2, . . . , Vτn 6= m) (2.28)

=
∑
t∈N

P(τn = t)P(V1, . . . , Vt 6= m) (2.29)

=
∑
t∈N

P(τn = t)(1− pm)t (2.30)

= E[(1− pm)τn ]. (2.31)

Thus

E[(1− pm)τn + (1− pn)τm ] = 1. (2.32)
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3 Non-adjacent uniform placements

My home movie theatre has n seats in a single row. One night I threw a big party, and at the
end everyone wanted to watch the movie, but at a safe distance from everyone else (to avoid virus
transmission). One by one people sat down in a (uniform) random seat that wasn’t adjacent to
anyone who is already seated. How many people got a seat? Can the distribution of occupied seats
be described in a simple way?

Let Xn denote the number of people who have a seat when no more seats can be taken, i.e.
when every seat is either occupied or adjacent to an occupied seat. Clearly dn3 e ≤ Xn ≤ dn2 e. What
is EXn? VarXn?

The expectation can be calculated via a generating function idea. Let an = EXn. After the first
person to sit down selects a location, this divides the seats into two smaller groups, and effectively
‘deletes’ the two seats adjacent to the first seat chosen. Further selections in each group are uniform
over those groups. It follows that an satisfies the recursion

an = 1 +
1

n

n∑
i=1

(ai−2 + an−i−1) = 1 +
2

n

n−2∑
i=1

ai, (3.1)

where a−1 = a0 = 0 by convention. Let f(x) =
∑

n≥1 anx
n. Multiplying by xn−1 and summing

over n in the above recursion yields

f ′(x) =
x2

(1− x)2
+

2x(1 + f(x))

1− x
. (3.2)

This ODE can be solved to give

f(x) =
1− e−2x

2(1− x)2
= x+ x2 +

5

3
x3 + 2x4 +

37

15
x5 + · · · . (3.3)

Using series expansions, we get

f(x) =
1

2

∑
n≥0

(n+ 1)xn

∑
n≥1

(−1)n+1 2n

n!
xn

 , (3.4)

and equating coefficients yields

an =
1

2

n∑
j=1

(−1)j+1 2j

j!
(n+ 1− j). (3.5)

Mathematica gives an
n = 1

nEXn → 1
2

(
1− e−2

)
as n→∞. It’s not too hard to see this explicitly:

an =
n

2

n∑
j=1

(−1)j+1 2j

j!
− 1

2

n∑
j=2

(−1)j
(j − 1)2j

j!
(3.6)

≈ 1

2
(1− e−2)n+

1

2
(1− 3e−2) (3.7)

≈ .432332n+ .296997. (3.8)

Question 3.1. Is there a direct combinatorial/probabilistic explanation for this limiting constant?

11



Other functions of Xn can also be computed this way. Let U denote the position of the first
person to choose a seat, so U is uniform on [n]. Implicit in our proof of the recursion for an is the
distributional identity

Xn
d
=
∑
i∈[n]

1{U = i}(1 +X ′i−2 +X ′′n−i−1). (3.9)

(Here X ′ and X ′′ represent independent copies of X.) Squaring both sides and using the fact
that the events {U = i} are disjoint over i to eliminate cross terms yields

X2
n
d
=
∑
i∈[n]

1{U = i}(1 +Xi−2 +Xn−i−1)2. (3.10)

Setting bn = EX2
n and g(x) =

∑
n≥1 bnx

n, the same methods as above give the recursion

nbn = 2nan − n+ 2

n−4∑
i=1

aian−3−i + 2

n−2∑
i=1

bi, (3.11)

the functional equation

g′(x) = 2f ′(x)− 1

(1− x)2
+ 2x2f(x)2 +

2x

1− x
g(x), (3.12)

and the solution

g(x) =
(1 + x)(1 + e−4x)− 2(1− x+ 2x2)e−2x

4(1− x)3
= x+ x2 + 3x3 + 4x4 +

19

3
x5 + · · · . (3.13)

With some additional effort, an explicit formula for bn follows:

bn =

(
n+ 1

2

)
+

1

8

n∑
j=2

(−1)j

j!

(
4j(1− j/4)− 2j(2 + j2)

)
(n− j + 1)(n− j + 2) (3.14)

Expanding the polynomial (n− j + 1)(n− j + 2) and summing terms separately yields

bn ≈
n2

4
(1− e−2)2 +

n

2
(1− 4e−2 + 5e−4) +

1

4
(1− 6e−2 + 21e−4) (3.15)

≈ .186911n2 + .275119n+ .143154. (3.16)

Note that

lim
n→∞

bn
n2

=
(

lim
n→∞

an
n

)2
, (3.17)

so that VarXn is order n, namely

VarXn = e−4(n+ 3) +O(exp(−n)). (3.18)

.
Usually, the next step is:
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Conjecture 3.2. Xn has the following central limit theorem:

Xn − an√
VarXn

d→ N(0, 1). (3.19)

It is not yet clear how to prove this CLT. Given our nice recursive formula, it is natural to try
a moment generating function approach. Set

cn(z) = E[zXn ]. (3.20)

Exercise: use the distributional recursion 3.9 to obtain

z−1ncn(z) =

n∑
i=1

ci−2(z)cn−i−1(z). (3.21)

Now define the two-variable moment generating function

h(x, z) =
∑
n≥1

cn(z)xn. (3.22)

The above recursion, after some manipulations (similar to the variance calculation) leads to

z−1∂h

∂x
(x, z) = (1 + x+ xh(x, z))2. (3.23)

If you ask Mathematica nicely, it provides the following solution:

h(x, z) = − x
√
zCosh[x

√
z] + (xz + z − 1)Sinh[x

√
z]

(x− 1)
√
zCosh[x

√
z] + (xz − 1)Sinh[x

√
z]

(3.24)

= zx+ zx2 +
1

3
(z + 2z2)x3 + z2x4 +

1

15
(8z2 + 7z3)x5 + · · · (3.25)

Ideally, one could extract enough information about the coefficient of xn in h(x, z) to understand
the limiting distribution of Xn. To prove the conjecture, it is enough to show that

lim
n→∞

exp
(
−zan/

√
VarXn

)
E
[
exp

(
z√

VarXn

)]
= E[exp(zN(0, 1))] = exp(z2/2). (3.26)

Numerical approximations suggest that this holds.

Question 3.3. Can the explicit formula for h(x, z) be used to prove the MGF convergence 3.26?

Other possible distributions: uniform random configuration (see ‘Padovan’ sequence), or left-
to-right arrivals with some distribution (inter-distances are either 2 or 3 with any probability).

Question 3.4. Which distribution, among those that are sufficiently ‘random’ and ‘local’, optimizes
the average number of seats taken?

How to make this question make sense? If seats are taken left to right, with all gaps of size
one, then clearly the number of seats is optimized. Perhaps ‘local’ means that arrivals can only ask
about a constant number of seats when deciding on availability... or something like this.
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3.1 MGIS, September 2021

There is existing work on computing asymptotic value limn→∞Xn/n for a large class of (possibly
random) graphs. The ‘non-adjacent placements’ process can be viewed as a ‘maximal independent
greedy set’ on Z (or N or an interval) as follows. Assign to the sites z ∈ Z iid continuous random
variables Wz, and define a sequence (It(Z) : t ∈ R) of increasing subsets of Z via

It = {z : Wz < t, and z − 1, z + 1 /∈ It−}, (3.27)

where It− =
⋃
s<t Is. Then I = I∞ is a maximal independent set, in the sense that every point

in Z is adjacent to some point of I, and this construction is equivalent to choosing ‘seats’ one by
one for a finite interval.

With this construction, we can directly compute the expected density of I, i.e. P(0 ∈ I). Choose
arrival times Wz that are iid with uniform (0, 1) distribution. First, observe that on a finite interval,
say {0, 1, 2, . . . n},

P(0 ∈ I|W0 = x) = 1− P(1 arrives before 0|W0 = x) (3.28)

= 1− P(W1 < W0|W0 = x) + P(2, 1, 0 arrive in that order|W0 = x) (3.29)

= 1− P(W1 < x) + P(W2 < W1 < x) (3.30)

− P(3, 2, 1, 0 arrive in that order|W0 = x) (3.31)

=
n∑
k=0

(−1)k
xk

k!
, (3.32)

which converges to e−x as n→∞. It follows that for MGIS on N or Z,

P(0 ∈ I(N)) =

∫ 1

0
e−x = 1− e−1, (3.33)

and

P(0 ∈ I(Z)) =

∫ 1

0
e−2x =

1

2
(1− e−2), (3.34)

since conditionally on W0 = x, the event that −1 arrives before 0 is independent of the event
that 1 arrives before 0, so the above calculation splits into a product. Note that this recovers the
same density as before. It also gives an explicit expression for finite intervals:

P(0 ∈ I([−a, b])) =

∫ 1

0

 a∑
j=0

(−1)j
xj

j!

( b∑
k=0

(−1)k
xk

k!

)
dx. (3.35)

Of course, this converges to P(0 ∈ I(Z)) quickly as a or b→∞.

3.2 Distribution of the configuration

A natural candidate for the distribution of I on Z is a renewal process, namely the ergodic process
that has gaps of size 1 or 2 between points of the configuration, each gap occuring independently
with the appropriate probability so that the configuration has density 1

2(1− e−2).

Fact 3.5. I does not have the distribution of this renewal process.
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To prove this, we can look at a probability for a possible configuration on a subinterval in Z of
size 6. Let R ⊂ Z denote the renwal process configuration. Assuming sites 0 and 6 are occupied,
there are two possible ways to fill the interval [0, 6] ∩ Z: with two gaps of size 2, or three of size 1.
Observe that

P(0, 2, 4, 6 ∈ I|W0 = x,W2 = y,W4 = z,W6 = w) = (3.36)

e−xe−w(1−min(x, y))(1−min(y, z))(1−min(z, w)). (3.37)

Integrating over all four variables yields

P(0, 2, 4, 6 ∈ I) =
1

2
− 79

30e2
≈ 0.1436170875 (3.38)

For the renewal process R, we must first compute the probabilities of having gaps of size 1 or
2, say p1 and p2. The densities d1, d2 of gaps of size 1 and 2 satisfy

d1 + d2 =
1

2
(1− e−2) and 2d1 + 3d2 = 1. (3.39)

(The second condition comes from counting the total length: gaps of size 1 correspond to length
2 strings 10, and gaps of size 2 to length 3 strings 100.) The probabilities are then given by

p1 =
d1

d1 + d2
, and p2 =

d2

d1 + d2
. (3.40)

The solution is p1 = e2−3
e2−1

, p2 = 2
e2−1

, and we can obtain

P(0, 2, 4, 6 ∈ R) = P(0 ∈ R)P(2, 4, 6 ∈ R|0 ∈ R) (3.41)

=
1

2
(1− e−2) · p3

1 (3.42)

≈ 0.1401590138 (3.43)

Since these probabilities don’t match, the distributions are different.
One way to get a handle on the configuration is via the following ‘renewal’ event:

Ck = {W0 > W1 > · · · > Wk < Wk+1} (3.44)

In words, Ck is the event where, searching right from site 0, the first site where there is a
guaranteed element of I (because the weight at that site is smaller than both neighbors) occurs at
k. Along with Ck we have the random variable

K = min{z ≥ 0 : Wz < min(Wz−1,Wz+1)} (3.45)

Conditioning on W0 and Wk allows us to compute the conditional probabilities of the Ck:

P(Ck|W0 = x,Wk = y) =
(x− y)k−1

(k − 1)!
(1− y), (3.46)

and thus

P(Ck) = P(K = k) =

∫
x>y

(x− y)k−1

(k − 1)!
(1− y) dx dy =

k + 1

(k + 2)!
. (3.47)
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So K is sub exponential, and for example,

E[K] =
∑
k≥0

k(k + 1)

(k + 2)!
= e− 2,Var(K) = e(3− e). (3.48)

The generating function of K is

E[wK ] =
1 + (w − 1)ew

w2
. (3.49)

What does this have to do with ‘renewal’? Conditionally on W0, the configuration to the right
of 0 is independent of the configuration to the left, so the events Ck and C−k (same event but left
instead of right) are conditionally independent; and if we also condition on Wk, the configuration
in [0, k] is independent of the configuration in [k + 1,∞). So we can build the configuration I by
first generating two independent copies of K, one for the right of 0 and one for the left – note that
these values completely determine the configuration in the (random) interval [−K ′ − 1,K + 1] –
then generating further copies starting at K + 2 and −K ′ − 2, and so on.

In principle, this should allow a calculation of the covariance between sites in I, i.e. of the
probabilities

P(0, k ∈ I) (3.50)
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4 Adjacent occurrences in a random permutation

Let σ be a uniformly random permutation on [n], i.e. σ : [n] → [n] a uniformly random bijection.
Define the indicator variables

Aj = 1{σ(j + 1) = σ(j) + 1}, (4.1)

for j ∈ [n− 1]. For example, when σ = 2341, i.e. σ(1) = 2, σ(2) = 3, σ(3) = 4, σ(4) = 1,

A1 = A2 = 1, A3 = 0. (4.2)

Consider the statistic

Yn =
n−1∑
j=1

Aj (4.3)

Y counts the number of ‘adjacencies’ preserved by σ, but Y ignores the final possible ‘adjacent
pair,’ namely σ(n) and σ(1). Note also that Y does not count the numbers n and 1 as ‘adjacent,’
even though they are 1 apart mod n. This makes it easy to establish a limit theorem for Y , and
small perturbations of Y will follow the same limit law.

Observe that EAj = 1
n−1 for all j, so EYn = 1 for all n. Note that the Aj are all pairwise

dependent. It is not too hard to show that

EAiAj =
1

(n− 1)(n− 2)
, (4.4)

so

Var(Yn) =
∑
j

E[A2
j ] +

∑
i 6=j

EAiAj −
∑
j

E[Aj ] =
∑

i 6=j∈[n−1]

1

(n− 1)(n− 2)
= 1. (4.5)

and

Cov(Ai, Aj) =
1

(n− 1)2(n− 2)
∼ n−3, (4.6)

To see 4.4, note that the event AiAi+1 is equivalent to having an ascending sequence of length 3
starting at position i. Whatever goes in position i, there is only one choice out of the possibilities
for the next two numbers for which the sequence σ(i), σ(i)+1, σ(i)+2 occurs, and there are exactly
(n− 1)(n− 2) possibilities for these two slots. (This doesn’t quite work unless we consider n and 1
an adjacent pair!) Similar reasoning takes care of the case |i− j| > 1 separately, but interestingly,
the probabilities come out the same.

Question 4.1. Is it a coincidence that the probability P(AiAj) does not depend on i and j, as long
as i 6= j, or is there a simple explanation that does not rely on splitting into cases when j = i± 1
and otherwise?

Question 4.2. Does this happen for triples of the Aj’s? For k ∈ N, it always holds that

EA1A2 · · ·Ak =
1

(n− 1)k
=

1

(n− 1)(n− 2) · · · (n− k)
. (4.7)

Is it true, for example, that

EA1A3A5 =
1

(n− 1)k
? (4.8)
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This seeems likely to be false, because there can be ‘collisions’ of possible adjacent pairs when
three pairs are considered.

One can think of the Yn as a process in n. Start with the trivial permutation σ1 : [1]→ [1], and
for n ≥ 1, recursively define

σn+1(j) =


σn(j), j = 1, 2, . . . , Un+1 − 1

n+ 1, j = Un+1

σn(j − 1), j = Un+1 + 1, . . . , n+ 1

(4.9)

where {Un}n is a sequence of independent uniform random variables, with Un is uniform on
[n] for each n. In words, writing σn in in-line notation, σn+1 is obtained by sticking n + 1 in at
a random spot. Then σn has the same distribution as a uniform random permutation for each n,
and Yn is described by the transition probabilities

Yn+1 =


Yn − 1, w.p. Yn

n+1

Yn, w.p. n−Yn
n+1

Yn + 1, w.p. 1
n+1

(4.10)

Proposition 4.3. With the initial conditions Y1 = 0, this recursive definition Yn agrees in distri-
bution with 4.3.

(We abuse notation slightly by writing Yn and σn for both this process in n and the distribution
functions.)

Proof. Yn increases by 1 exactly when n+ 1 is placed just after n in σn. Yn decreases by 1 exactly
when n+ 1 is placed between two adjacent elements σ(i) and σ(i+ 1) = σ(i) + 1. There are exactly
Yn such positions i. In any other case, Yn = Yn+1.

Let X∞ and Y∞ denote the limiting (stationary) distributions for the X and Y processes.

Theorem 4.4. Y∞ ∼ Poisson(1).

Proof. One can show that the poisson distribution exactly satisfies the recursion implied by 4.10,
namely the equation

P(Yn+1 = k) =
n− k
n+ 1

P(Yn = k) +
k + 1

n+ 1
P(Yn = k + 1) +

1

n+ 1
P(Yn = k − 1). (4.11)

Indeed, substituting P(Yn = k) = 1
e

1
k! yields the equality

1

e

1

k!
=

1

e

1

n+ 1

1

k!
(n− k + 1 + k) . (4.12)

It follows that Poisson(1) is the unique stationary measure for Y , and thus by convergence of
markov chains, Y∞ has Poisson(1) distribution.

One simple variant on Y is the ‘full’ sum

Xn =
n∑
j=1

Aj , (4.13)
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where An = 1{σ(n) + 1 = σ(1)}. X satisfies the recursive relation

P(Xn+1 = k) =
n− k − 1

n+ 1
P(Xn = k) +

k + 1

n+ 1
P(Xn = k + 1) +

2

n+ 1
P(Xn = k − 1). (4.14)

This isn’t satisfied by the poisson density. However, X is close enough to Y that it has the
same limit: indeed, Xn − Yn = An converges to 0 in L1, since the indicator variable An has
EAn = 1

n−1 → 0, which implies that Xn − Yn converges to 0 in distribution.
Another natural variant is to allow equality mod n. Define

Bj = 1{σ(j + 1) = σ(j) + 1}, (4.15)

where the equality and the addition are performed mod n. For example, with σ = 2341 as
above,

B1 = B2 = B3 = B4 = 1. (4.16)

Set

Zn =
n∑
j=1

Bj . (4.17)

What is the corresponding limit for Z∞? The same idea does not apply. Thinking of Zn as
a process in n doesn’t work as nicely as with Y , because the adjacent pair 1 and n mod n is no
longer adjacent when n+ 1 is added.
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5 Hitting times of sums

5.1 IID Uniform(0, 1)

Let Sn =
∑n

i=1 Ui be a sum of iid uniform (0, 1) random variables Ui, and for x > 0, consider the
hitting time

τx = inf{n > 0 : Sn ≥ x}. (5.1)

There is an easy way to compute Eτx for x ∈ (0, 1). First, to prove that Eτx is continuous, note
that

Eτx =
∑
k≥1

P(τx ≥ k) · k =
∑
k≥1

P(Sk < x) · k. (5.2)

Each of the probabilities P(Sk < x) is continuous in x, so it suffices to show that the infinite sum
above is uniformly convergent. But this is clear: the probabilities P(Sk < x) decay exponentially if
x is confined to a compact interval by the usual CLT, and so the tails of the sum above converge
to zero uniformly (on any compact interval).

Also, by conditioning on the value of U1, we have

Eτx = P(U1 ≥ x) +

∫ x

0
(1 + Eτx−y)P(U1 = y)dy = 1 +

∫ x

0
Eτydy. (5.3)

Since Eτx is continuous, the above equation shows that it is differentiable, and taking the
derivative yields

∂

∂x
Eτx = Eτx. (5.4)

Thus Eτx = ex for x ∈ (0, 1). Now for x ≥ 1,

Eτx =

∫ 1

0
(1 + Eτx−y)dy = 1 +

∫ x

x−1
Eτydy, (5.5)

and so differentiating yields

∂

∂x
Eτx = Eτx − Eτx−1. (5.6)

(This equation actually holds for all x, if one defines τx = 0 for x ≤ 0.) This equation can be
solved recursively, i.e. by solving it on x ∈ (1, 2), using the explicit formula Eτx−1 = ex−1, and the
fact that the differential equation

y′ = y + f (5.7)

has solution

y = Cex + ex
∫ x

0
e−sf(s)ds. (5.8)

One obtains that for x ∈ (n, n+ 1),

Eτx = ex
n∑
k=0

e−k
(−1)k

k!
(x− k)k. (5.9)
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For example, Eτx = (1 + 1
e )ex − xex−1 for x ∈ (1, 2). Interestingly, Eτx is smooth for x /∈ N,

and it is Cn at x = n, i.e. it has exactly n− 1 derivatives at n.

The LLN and CLT for renewal processes tell us that Eτx ∼ 2x and Var(τx) ∼ 2
9x, but this is

not at all clear from the explicit formula. For example:

Question 5.1. Can it be proved directly that

lim
x→∞

1

x
ex
dxe∑
k=0

e−k
(−1)k

k!
(x− k)k = 2? (5.10)

Additionally:

Question 5.2. Numerical computations suggest that Eτx − 2x converges to 2
3 as x → ∞, at an

exponential rate. Can this be proved?

Higher moments can also be computed explicitly. For any k ∈ N and x ∈ (0, 1),

Eτkx = (1− x) +

∫ x

0
E
[
(1 + τx−y)

k
]
dy = 1 +

k∑
j=1

(
k

j

)∫ x

0
Eτ jydy. (5.11)

This is equivalent to a differential equation of the same form as in the case k = 1: solving yields
the recursion

Eτkx = ex

1 +
k−1∑
j=1

(
k

j

)∫ x

0
e−sEτ jydy

 . (5.12)

Solving this recursion gives

Eτkx = ex

 k∑
j=1

j · s2(k, j) · xj−1

 , (5.13)

where s2(k, j) are the Stirling numbers of the second kind, i.e. the number of partitions of
[k] into j non-empty subsets. (So js2(k, j) is the number of such partitions with a distinguished
subset.) The first few are

Eτx = ex,Eτ2
x = ex(1 + 2x),Eτ3

x = ex(1 + 6x+ 3x2), ... (5.14)

We note the following surprising fact: for x ∈ (0, 1), V ar(τx) = (1+2x)ex−e2x is not monotone
on (0, 1). In fact, it has a maximum when x ≈ .858.

Find explicit formulae for Var(τx) for any x > 0.

The entropy exhibits a similar phenomenon (see picture).
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Figure 5: An empirical plot of the entropy of τx for x ∈ [0, 4].

5.2 IID Geometric(p)

Now let Sn =
∑n

i=1Xi where Xi are iid Geometric(p) for p ∈ (0, 1). We have hitting times

σk = inf{s ≥ 0 : Ss ≥ k} (5.15)

for any k ∈ R. The the renewal equation gives

Eσk = 1 +
k−1∑
i=1

pqk−i−1Eσi, (5.16)

and one readily finds the generating function∑
k≥1

zkEσk =
z(1− qz)
(1− z)2

, (5.17)

where q = 1− p, which yields the exact (!) formula

Eσk = 1 + (k − 1)p = pk + q (5.18)

for k ≥ 1. The following questions make sense in the context of the ’glass panes’ game from
Squid Game:

Question 5.3. What is the distribution of σk? What is its median? For a given L > 0, which
value j maximizes P(σk ∈ {j, j − 1, . . . , j − L})?

Given k and L, if we can solve for the maximizer j, that’s where we should want to stand in line
in the glass panes game. Probably all of these are explicitly answerable, since Ss has the negative
binomial distribution, and Ss and σk are related in the usual way: Ss ≤ k ⇐⇒ σk ≥ s.
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6 Heatseekers

Start k heatseeking missiles in Rd or the torus Td, labelled 1, 2, . . . , k. Missiles move at unit speed,
and missile i moves directly towards missle (i + 1) mod k for each i. When missle i catches its
target, one can imagine that it ’coalesces’ with missile i+ 1, so we are left with one fewer missiles
performing the same dynamics. Eventually, we are left with some stable configuration, where no
more coalescences will ever occur. It seems natural to look at the limit k →∞, and start with iid
initial points, or with a Poisson process of points with intensity k.

In dimension d ≥ 2, stable configurations should be measure zero, so the process should always
end with a single coalesced particle. Is there a quick proof of this? Something along the lines of:
the only possible stable configurations are where all the particles are ’colinear,’ and those have
measure zero.

Question 6.1. How many coalescences occur before a stable configuration is reached?

Question 6.2. Start from iid random points or a Poisson process. After j coalescences have
occurred, what is the distribution of the remaining points?

Question 6.3. When a stable configuration is reached, what are the ’cluster sizes,’ i.e. the number
of coalesced particles ’contained’ in each surviving particle?

It’s easy to calculate the measure of the set of stable configurations on the circle:

Fact 6.4. Suppose the initial heatseeker positions are sampled iid uniformly over the circle T1.
Then the probability that the configuration is stable, i.e. all missiles are traveling in the same
direction, is 2k−1.

Proof. All particles have to be traveling in the same direction around the circle for the configuration
to be stable. Each particle is initially traveling clockwise or counter clockwise, independent of the
directions of the other particles.

Observe that the only particle whose trajectory is affected by a collision is the one that found
its target – the other trajectories are unchanged from time τ− to time τ+. So given an initial
configuration of initial positions, we can write down a sequence of orientations for each particle, i.e
an element of {±1}k, which evolves by: at each time, find a pair of arrows that disagree, ai 6= ai+1,
and delete one of them from the sequence. Exactly how we choose the next arrow to delete seems
complicated.

6.1 Mean field arrows

Suppose we start with an iid field of arrows in {±1}k, and choose uniformly from all disagreements,
and delete the ’left’ arrow from that disagreement. If we just want to keep track of the number of
arrows of each type during the process, it is equivalent to the following ‘random walk’ formulation:
let X0 = B ∼ Binomial(k, 1/2) be the number of +1’s initially, and Y0 = k − B is the number of
−1’s. At each step we flip a fair coin and decrease either X or Y by 1. The process ends at the
first time when either X = 0 or Y = 0. So we have a simple random walk (Xt, Yt) taking steps
(−1, 0) or (0,−1), each with probability 1/2, started from (B, k −B) and ended on hitting one of
the axes x = 0 or y = 0. We can answer some questions for this model. For example, the total
number of coalescences is the hitting time

T = min{t ≥ 0 : Xt = 0 or Yt = 0}. (6.1)
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Figure 6: A plot of 1
nZnt for t ∈ [0, 1], where n = 105 and Zi is the number of clusters at step i in

the heatseeker meanfield process initialized with n missiles. Note that Z0 = n/2 + O(
√
n), since

initially the number of disagreements is exactly Binomial(n, 1/2). The number of steps taken until
the process ends (i.e. Zt = 0) is n+O(

√
n), though this is not completely obvious a priori.

The asymptotics of T can be worked out explicitly: for example, it should be easy to
see that the total number of steps needed is n+O(

√
n). But it won’t help us understand

Zt or the cluster size distribution.

Trying to track the sizes of the ’clusters’ of arrows all pointing the same direction in this model
is an interesting question. At each time t the cycle of length k− t is divided into connected clusters
of arrows all pointing the same direction. The number of disagreements is the same as the number
of clusters: associate each disagreement to the connected cluster preceding it. This number, call it
Zt, decreases by 0 or 1 at each step: it decreases by 1 if a disagreement associated to a cluster of
size 1 is chosen for deletion, in which case the two neighboring clusters, say of sizes c and c′ merge
into a single cluster of size c+ c′; it decreases by 0 if a disagreement associated to a cluster of size
≥ 1 is chosen for deletion, in which case that cluster decreases its size by 1, but the disagreement
is still there (and nothing else is affected).

We are now entering the territory of ’fragmentation/coagulation’ processes, for which there may
be a nice hydrodynamic limit description (see figure 6 for a plot of Zt, which appears to have a
deterministic scaling limit).
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7 The continuous coupon collector process

Consider the following ‘continuous’ version of the coupon collector problem. Start with a circle
of unit circumference T. Fix a number θ ∈ (0, 1), and successively choose random points zj ∈ T
according to uniform measure on T for j = 1, 2, . . .. Form random arcs Ij ⊂ T of length θ, centered
at zj , and consider the set of ‘collected’ points Tn =

⋃
j≤n Ij . Our main goal will be to understand

the stopping time

τθ = min{t : Tt = T}. (7.1)

Question 7.1. What is

lim
θ→0
−θEτθ

log θ
, (7.2)

if it exists?

Question 7.2. Suppose the process has run for some time, and we are given a set A ⊂ T which is
a union of arcs of length θ. Set τA to be the first time t such that A ∪

⋃t
s=1 Is = T. Which sets A

of fixed length l maximize/minimize EτA?

(Note: the maximization problem would be silly if we would allow A to be any Lebesgue
measurable set (or even any union of arcs of arbitrarily small length), since then the maximum
would occur when A is a dense subset of T of Lebesgue measure L, and we would have EτA = Eτθ
for that A.)

Conjecture 7.3. The minimum value occurs when A is an arc of length l, and the maximum
occurs when A is a union of approximately l/θ ‘equally spaced’ arcs of length θ.

For convenience, suppose θ = 1
N for some positive integer N . Partition S into N fixed, disjoint,

connected, open arcs {ANk : 1 ≤ k ≤ N} of angle measure θ = 1
N , and consider the stopping time

σN = min{t : each ANk , 1 ≤ k ≤ N, contains at least one zj , 1 ≤ j ≤ t}. (7.3)

Then σN ≤ τ deterministically, since if some arc ANk contains no point zj , then the center of
that arc cannot belong to T . Moreover, σ is an instance of the classical coupon collector process
on N coupons. Thus

Eτ ≥ Eσ ≈ N logN =
1

θ
log

1

θ
= −1

θ
log θ. (7.4)

Similarly, τ ≤ σ2N deterministically, since if every arc A2N
k contains a point, then every such

arc is covered by T , and thus T covers T. So

Eτ ≤ Eσ2N ≈ −
2

θ
log θ. (7.5)

This is enough to see that

− θEτθ
log θ

∈ [1, 2], (θ → 0) (7.6)
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One can also consider the length covered by time n: set Ln(θ) = Ln = |Tn|. In perfect analogy
with the discrete coupon collector process, we have

ELn =

∫
T
P(w ∈ Tn) dw =

∫
T

(1− (1− θ)n) dw = 1− (1− θ)n . (7.7)

A more complicated quantity is P(w, z ∈ Tn) for two points w 6= z on the circle: as usual, this
is related to the second moment of L, via

EL2
n =

∫
Ω
L2
n

=

∫
Ω

(∫
T

1{w ∈ Tn}dw
)2

=

∫
Ω

∫
T

∫
T

1{z, w ∈ Tn} dz dw

=

∫
T2

P(z, w ∈ Tn) dz dw.

(Here Ω = Ωn denotes the underlying probability space, and we have suppressed the implied
probability measure for Tn.)

It is straightforward to check that

P(w, z ∈ Tn) = 1− P(z 6∈ Tn)− P(w 6∈ Tn) + P(z, w 6∈ Tn)

= 1− 2 (1− θ)n +

{
(1− 2θ)n , dT(z, w) > θ

2(1− θ)n (1− θ + dT(z, w))n , dT(z, w) ≤ θ

where dT denotes the angle distance on T, i.e. dT(eiα, eiβ) = |α − β| ∈ [0, π]. The formula for
the case when dT(z, w) < θ is the hard part: it boils down to the observation

P(z, w 6∈ Tn) = P(z, w 6∈ Aj∀j and either z 6∈ Aj∀j or w 6∈ Aj∀j)

= P(z, w 6∈ Aj∀j) · 2P
(
z /∈ Tn

∣∣∣z, w 6∈ Aj∀j)
Integrating directly, we get

EL2
n = 1− 2(1− θ)n + (1− 2θ)n+1 +

2

n+ 1

(
(1− θ)n+2 − (1− θ)(1− 2θ)n+1

+ θ − 1

n+ 2

(
1− (1− θ)n+2

) )
Using the scaling θ = α logn

n for α > 0, these formulas become

ELn ≈ 1− n−α (7.8)

and
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EL2
n ≈ 1− 2n−α +

(
1− 2α

n

)
n−2α +

2

n+ 2

(n+ 1

n+ 2

(
1− α

n

)2
n−α

−
(

1− α

n

)(
1− 2α

n

)
n−2α +

α

n
− 1

n+ 2

)
= (1− n−α)2 +

2

n
n−α(1− (1 + α)n−α) + o(n−1)

Thus, the variance is (to leading order)

Var(Ln) = EL2
n − (ELn)2 ≈ 2n−1−α (1− (1 + α)n−α

)
(7.9)

Chebychev’s inequality gives the crude estimate

P(|Ln − 1 + n−α| ≥ n−1/2) ≤ 2n−α. (7.10)

Idea: It would be nice to show that if Ln is ‘close enough’ to 1, then it equals 1 with high
probability. (It seems unlikely that there is a (very) small gap missing in the union of arcs.)
Perhaps there is a sub-martingale approach?
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8 Intersection of random sets

(Half planes) Consider n iid half planes Hj , j = 1, . . . , n, given by Hj = {p ∈ R2 : 〈p, eiθj 〉 ≤ Rj},
where θj , j = 1, . . . , n are iid uniform on [0, 2π), and Rj are iid according to some distribution F
supported on (0,∞). Set In =

⋂n
j=1Hj . What does In look like? Since all the Hj are convex, In is

convex for all n. Also, except in the case where Rn is identically 0, In is compact for n sufficiently
large. Because the θj are uniform, In has rotational symmetry in distribution, in the sense that
any rotation of In about the origin is equal in distribution to In; also, the ‘radial’ random variables

Qn(θ) = sup{t > 0 : teiθ ∈ In} (8.1)

are identically distributed (though, of course not independent!) for θ ∈ [0, 2π).

Example 1: Suppose that F = δ0, i.e. all the Rj are 0. Then we are sampling random half
planes through the origin in R2, and taking the intersection. The intersection will be a single point
for some finite n almost surely, since each time an additional half plane is added there is a positive
probability that it intersects In only in the origin (for n ≥ 2). Since all the planes pass through the
origin, In is a cone through the origin. In fact, the angle ψn subtended by In is a simple Markov
process in discrete time on [0, 1], which is almost surely decreasing: it has transition probabilities

ψn+1 =


0 w.p. 1

2 −
ψn

2π

ψn w.p. 1
2 −

ψn

2π

x w.p. 1
πdx, 0 ≤ x ≤ ψn

(8.2)

These three events correspond to Hn+1 missing, containing, or partly intersecting In. One can
easily compute the conditional expectation of ψn+1 given ψn:

E [ψn+1|ψn] = ψn

(
1

2
− ψn

2π

)
+

∫ ψn

0
x · 1

π
dx =

1

2
ψn. (8.3)

Thus, setting ψ0 = 2π, 1
2πEψn = 2−n.

Exercise 8.1. More generally, if the half spaces are replaced by cones of angle θ, this should be
equivalent to covering the circle by arcs of length 2π − θ... check this...

What is the expected first time that ψn = 0?

Example 2: Suppose that F (s) = s21{s ∈ [0, 1]} + 1{s ≥ 1}. This is equivalent to choosing
random points from area measure on the unit disk, and drawing half planes perpendicular to the
radial lines to those points. In this case,

Qn(θ) = min
j
{Rj sec |θ − θj | : |θ − θj | < π/2}. (8.4)

Thus we have

P(Qj(θ) ≤ q) = P(Rj sec |θ − θj | ≤ q)n, (8.5)

where sec |θ − θj | is taken to be infinite if |θ − θj | ≥ π/2. This can be evaluated directly:
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P(Rj sec |θ − θj | ≤ q) =
1

2
P
(
Rj sec |θ − θj | ≤ q

∣∣∣|θ − θj | < π/2
)

(8.6)

=
1

2π

∫ π/2

−π/2

∫ 1

0
1{s secφ ≤ q} · 2s ds dφ (8.7)

=
1

π

∫ π/2

−π/2

∫ q cosφ

0
s ds dφ (8.8)

=
q2

4
. (8.9)

It follows that

P(Qn(θ) ≤ q) = 1− (1− q2/4)n, (8.10)

and thus

n

4
Q2
n →d Exp(1). (8.11)

Roughly speaking, this suggests

Area(In) ≈ 4π

n
· Exp(1) (8.12)

for n large.
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9 Asymptotics of hitting times and expected value

Consider any process Xn, n ∈ N (or more generally, Xt for t ≥ 0). Consider also the hitting times
τk = min{n ∈ N : Xn ≥ k}, for k ∈ N associated to X. If X is a partial sum process, e.g.
Xn =

∑n
k=1 Yk where Yk ∼ Y are iid, EY < ∞ and Y ∈ [0,∞), the LLN for renewal processes

implies that

1

k
τk →

1

EY
almost surely and in L1. (9.1)

In general, Xn and τk should be inverse functions, roughly speaking. We explore under what
conditions such a statement is true.

Example 1: X = discrete coupon collector process, with N coupons (see section 2). Then
EXn = N

(
1−

(
1− 1

N

)n)
, and Eτk = N(HN − HN−k), where Hj is the jth harmonic number,

Hj = 1 + 1
2 + · · ·+ 1

j . Note that Eτk ≈ −N log
(
1− k

N

)
. These functions are ‘near’ inverses for N

large:

EXτk = k, (9.2)

since Xτk is always equal to k, and

EτXn ≈ −N log

(
1−

(
1−

(
1− 1

N

)n))
= −nN log

(
1− 1

N

)
≈ n. (9.3)

Example 2: X = Poisson process on R with rate λ. Then EXt = λt, while

Eτy =

∫
R
P(τy ≥ t)dt =

∫
R
P(Xt ≤ y)dt, (9.4)

which yields Eτy ≈ y
λ , by using the fact that Xt is Poisson distributed with mean λt.

We can prove the following. First, note that deterministically, Xτk = k. Also, if X is non-
decreasing,

τXn = min{m : Xm ≥ Xn} ≤ n, (9.5)

which implies

lim sup
n

τXn

n
≤ 1. (9.6)

Proposition 9.1. If X is non-decreasing and lim supn P(Xn = Xn+1) < 1, then limn→∞
τXn
n = 1.

Proof. The assumptions imply that for any ε > 0, there exists c < 1 such that

P(Xn = Xn+1 = · · · = Xn+εn) ≤ cεn. (9.7)

By the Borel Cantelli lemma, since the above probabilities are summable over n (for fixed ε),
the event

Xn = Xn+1 = · · · = Xn+εn (9.8)

occurs finitely often almost surely. Thus
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τXn

n
≥ 1− ε (9.9)

for n large; now let ε→ 0.

Thus, under the assumptions of the proposition, τXn ∼ n almost surely as n→∞.

Question: Can we weaken the assumptions to include the case where X is not necessarily
non-decreasing, or where X is constant on large invervals (as with the coupon collector)?
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10 Number of maximums of iid random variables

Let (Xi) be any iid sequence with common distribution X. Let Mn = max{X1, . . . , Xn}. If X is
continuous, then

P(Xn = Mn) = P(Xn > Mn−1) =
1

n
, (10.1)

since there is a unique maximum among the n values. The situation is more interesting if X is
has atoms. The event {Xn = Mn) becomes more likely, since conditioning on the number of maxes
yields

P(Xn = Mn) =
1

n
E|Maxn|, (10.2)

where Maxn = {i ∈ [n] : Xi = Mn} and E|Maxn| > 1 if X is atomic. On the other hand,
P(Xn > Mn−1) can be as small as exponential in n (for example, when X is Bernoulli). Assume X
takes values in Z, and denote

pk = P(X = k), and P<k =
∑
j<k

pj . (10.3)

The distribution of Max looks like

P(Maxn = m) =
∑
k∈Z

(
n

m

)
pmk p

n−m
<k . (10.4)

As a check, the binomial theorem gives

n∑
m=1

P(Maxn = m) =
n∑

m=1

∑
k

(
n

m

)
pmk p

n−m
<k (10.5)

=
∑
k

n∑
m=1

(
n

m

)
pmk p

n−m
<k (10.6)

=
∑
k

pn≤k − pn<k (10.7)

= 1, (10.8)

since the last sum telescopes. A similar calculation gives a formula for the expected size of Max:

E|Maxn| =
∑
k

n∑
m=1

m

(
n

m

)
pmk p

n−m
<k (10.9)

= n
∑
k

pk

n−1∑
j=0

(
n− 1

j

)
pjkp

n−j−1
<k (10.10)

= n
∑
k

pkp
n−1
≤k (10.11)

= nEpn−1
≤X (10.12)
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Figure 7: Approximate value of E|Maxn| for X ∼ Poisson(λ), with n = 102 and λ ∈ (0, 1). This
plot is way more interesting than it should be. The value appeared to smoothly decrease for λ > 1,
though to what limit I’m not sure. What is happening in (0, 1)?! Could be a rounding issue...

This value is surprisingly difficult to calculate, even for nice distributions. For example, when
X is Geometric(p), i.e. pk = pqk for k ≥ 0, we get the expression

E|Maxn| = n
∑
k

pqk(1− qk+1)n−1. (10.13)

For p = 1
2 and n large, Mathematica gives the value E|Max| ≈ 1.442689883. (Attempts to

evaluate these expressions have been in vain. Differentiating with respect to p goes nowhere fast,
for example. Mathematica also seems stumped. The expression is valid for all real values of n,
perhaps something can be done with that?)

Question 10.1. For some nice class of distributions X, show that

lim
n→∞

E|Maxn| exists ∈ (0,∞), (10.14)

and compute the limit.

The limit seems surprisingly difficult to compute, even for Poisson or Geometric.
Alternatively, we can work with the probability that Xn is the unique maximum. We have

P(Xn > Mn−1) =
∑
k

pkp
n−1
<k . (10.15)

It seems that this probability should be on the same order as P(Xn = Mn), i.e. roughly n−1,
under some mild conditions, but again the formulas are difficult to work with. Perhaps having all
of N as support is sufficient?

Conjecture 10.2. Show that if X ∼ Poisson(λ), for any λ > 0,

lim inf
n

nP(Xn > Mn−1) > 0. (10.16)
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If this fails, it should fail for all λ, since otherwise there would be a phase transition point in λ,
which would be too interesting. I suspect it holds for all λ.

Question 10.3. Is there some class of distributions, supported on N, such that

lim sup
n

nP(Xn > Mn−1) = 0? (10.17)

I suspect not – can this be proved?

One concrete example is when Xn are iid Uniform on (0, k) for fixed k. Then

P(Xn > Mn−1) = k−n
k−1∑
i=1

in−1 ≈ n−1(1− k−1)n, (10.18)

so this probability decays exponentially. Alternatively, if we let k = kn grow with n, a natural
choice being k = αn for α ∈ R, we obtain

P(Xn > Mn−1) ≈ e−α−1
n−1, (10.19)

i.e. the probability that a density α−1 Poisson process on Z∩[1, n] has a unique maximum
value.
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11 Ruler distribution

Consider the following general class of distribution functions. Fix a function f : R → R+ with∫
f = 1. (f may have atoms.) Then define the ‘ruler’ random variable Xf by

P(Xf ≤ x) = Ff (x) =

∫ ∞
−∞

f(t)1{f(t) ≤ x} dt. (11.1)

That is, the probability P(Xf ≤ x) is obtained by putting a ruler at height x over the function
f , and integrating below it. Observe that

EX =

∫
R

(1− Ff (x)) dx (11.2)

=

∫
R

∫
R
f(t)1{f(t) > x}dt dx (11.3)

=

∫
R
f(t)

∫ f(t)

0
dx dt (11.4)

=

∫
R
f(t)2 dt (11.5)

Loosely speaking, the density of f is given by

d

dx
P(X ≤ x) =

∫
R
f(t)δx(f(t)) dt (11.6)

= x · |f−1(x)| (11.7)

Question 11.1. Under what conditions on f does this actually hold? (When is it kosher to pass
the derivative through the integral?)

When f is a sum of atoms, i.e. f =
∑

n≥0 δnpn, we obtain

P(Xf = pn) =
∑

m:pm=pn

pm = #{m : pm = pn}pn. (11.8)

Thus, in this case,

EXα
f =

∑
n

pα+1
n (11.9)

for any α ∈ R.

Conjecture 11.2. Does it hold in general that

EXα
f =

∫
fα+1? (11.10)

This could make good exercise for a probability course. Does it have any other value?
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12 Random decreasing sequences

This note describes a natural model for a random sequence of probabilities pi ∈ (0, 1) with
∑

i pi = 1,
which is surprisingly difficult to work with. Let F be any distribution function on [0, 1] other than
F = δ1, the unit mass at 1 (up to zero measure changes), and {Xn}n∈N ∼ F i.i.d. Set Y1 = X1,
and for n > 1,

Yi = XiYi−1 = X1X2 · · ·Xi. (12.1)

First note that for any n ∈ N and k ∈ R,

E(Y k
n ) = E(Xk

1 · · ·Xk
n) = (EXk)n (12.2)

Let S =
∑

n∈N Yn. We have:

Proposition 12.1. S <∞ almost surely.

Proof. Let µ denote the mean of F . Since F is not the atom at 1, µ < 1, so

ES =
∑
n

EYn =
∑
n

µn =
µ

1− µ
<∞. (12.3)

If we want to use the Yi as probabilities, it is natural to normalize by S. This leads us to:

Question 12.2. What is the distribution of S?

It seems like this question does not have a satisfying answer. The distribution of Yn can be
readily computed, using the following recursive formula (which is just convolution for products of
independent random variables):

Proposition 12.3. Suppose F has a continuous density f , and for n ∈ N let gn denote the density
of Yn. Then gn exists, with g1 = f , and for n > 1,

gn(y) =

∫ 1

y

1

x
f(y/x)gn−1(x) dx. (12.4)

We can do the usual thing with logs:

log Yn =
n∑
i=1

logXi. (12.5)

If F is well behaved, so that the logXi satisfy a CLT, then we’ll have that log Yn is approximately
normal, on order n, i.e. Yn is approximately log-normally distributed with parameters on order n.
This at least gives us an approximation for the distribution of S: it is roughly an infinite sum of
log normals, namely Ln ∼ LogNormal(nE logX,nVar(X)) for n ≥ 1.

Another approach is to write a distributional equation for S:

S ∼ XS +X ′, (12.6)

where ∼ denotes equality in distribution (and, as usual, we have mildly abused notation: the two
copies of S are independent). Let H denote the CDF of S, i.e. H(s) = P(S ≤ s). For any s > 0,
12.6 gives TBD
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13 Fisherman’s Dilemma

Suppose a fisherman is sitting in his boat on the lake, waiting for fish. He can re-cast his line at any
time. What is the optimal strategy to catch the most fish? Assume that each time the fisherman
casts his line, he has to wait a random amount of time before he gets a bite. Specifically, fix a
distribution function F and a random variable X distributed like F , and let {Xn}n∈N be iid copies
of X. Then the nth time the fisherman casts his line, a fish will bite after time Xn. The fisherman
chooses a strategy for maximizing his haul over time: he may choose to re-cast his line at any time,
even if he hasn’t seen a fish. We can ask different questions with this setup: if the fisherman knows
F , what is his optimal strategy? What if he does not know F? What if it takes a fixed amount of
time to reel in and recast the line?

It is easiest to understand the case where F is known to the fisherman. Since the waiting times
between bites are independent, any optimal strategy should be of the form: pick a time t ∈ R, and
always re-cast at that time (if a fish hasn’t yet arrived). Given such a strategy, for k ∈ N, let Tk
denote the time between catching our (k − 1)st and kth fish, with T0 = 0 by convention. Also, use
F (x) = P(X > x) for the distribution of the X’s, p = F (t) and q = 1− p. The Tk are iid, and

ET1 =
∑
j≥0

P(X > t)jP(X ≤ t)
(
jt+ E[X|X ≤ t]

)
(13.1)

= q
(
t
∑
j≥0

jpj +
∑
j≥0

pjE[X|X ≤ t]
)

(13.2)

= q
( tp
q2

+
1

q

∫
R

P(s < X ≤ t)
q

ds
)

(13.3)

=
1

q

(
tp+

∫ t

0
(F (s)− p)ds

)
(13.4)

=
1

1− F (t)

∫ t

0
F (s)ds. (13.5)

Set µt(F ) = ET1(t, F ) to be the mean time to catch one fish using the always-re-cast-at-t
strategy, if the distribution of the X’s is F . µt(F ) is closely related to the hazard function of F ,
h(t) = −F ′(t)/F (t). By L’hopital’s rule,

lim
t→0+

µt(F ) = lim
t→0+

∫ t
0 F (s)ds

1− F (t)
= lim

t→0+

F (t)

−F ′(t)
= lim

t→0+

1

h(t)
= −1/F ′(0). (13.6)

Given F , our job is simply to minimize the function µt over t ∈ R: any such minimum value
yields an optimal strategy. If F is differentiable, then

dµt
dt

=
d

dt

[ 1

1− F (t)

∫ t

0
F (s)ds

]
=

F (t)

1− F (t)
+

F ′(t)

(1− F (t))2

∫ t

0
F (s)ds. (13.7)

Thus

dµt
dt

= 0 ⇐⇒ F (1− F ) = −F ′
∫ t

0
F (s)ds. (13.8)

So finding an optimal strategy boils down to solving this equation.
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There is one special distribution for this process: any exponential distribution F (x) = e−λx,
λ > 0. Because of the memory-less property of the exponential distribution, µt is constant when
F is exponential:

µt(Exponential(λ)) =
1

1− e−λt

∫ t

0
e−λsds =

1

λ

−e−λt + 1

1− e−λt
=

1

λ
. (13.9)

In fact, one can easily prove that the exponential distribution is the only distribution for which
µt is always constant. Indeed, if µt ≡ 1/λ, then cross-multiplying and differentiating (using the
FTC) yields

− 1

λ
F ′(t) = F (t), (13.10)

and this ODE, subject to F (0) = 1 and F (∞) = 0 only has the solution F (x) = e−λx.

One can actually do better than just the expectation of T1: it is straightforward to compute the
moment generating function of T1. Using the same notation as above, for z ∈ (0, p−1/t) we have

EzT1 =
∑
j≥0

pjqzjtE[zX |X ≤ t] (13.11)

= qE[zX |X ≤ t] ·
∑
j≥0

(p · zt)j (13.12)

= q
(∫

R

P(s < zX ≤ zt)
q

ds
)
· 1

1− pzt
(13.13)

=
log z

1− pzt

∫ t

0
zuF (u)du. (13.14)

This has all the information about the distribution of T1: for example,

P(T1 = m) =
1

m!

dm

dzm

∣∣∣
z=0

EzT1 . (13.15)

The moments can also be recovered directly, though it is easier if one substitutes z = er: then

ET l1 =
dl

drl

∣∣∣
r=0

EerT1 . (13.16)
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14 Limits of multiplicative functions on N

Consider the average sum of divisors function

σ(n) =
1

n

∑
d|n

d =
∏
p

1− p−αp−1

1− p−1
, (14.1)

where p ranges over the primes, and n =
∏
p p

αp . There are many questions about the asymp-
totic behavior of σ. Much work has gone into studying the random variable σ(Xn), where Xn

is uniformly distributed on [1, n]. It can be shown that σ(Xn) converges in distribution using
the Erdős-Wintner theorem. An alternative model is to consider the probability space Ω = NN,
equipped with the product measure of geometric random variables Yp, namely for k = 0, 1, . . .,

P(Yp = k) = (1− p−1)p−k (14.2)

for any prime p. Thus an element of Ω looks like (Y2, Y3, Y5, . . .), which corresponds to the
‘number’

∏
p p

Yp . This extends the random variables Xn in a natural way to the limit space Ω,
since the largest power of p dividing Xn is very close to Yp in distribution (and jointly over p).
More generally:

Question 14.1. Suppose f is a multiplicative function on N, so we can write

f(n) =
∏
p

f(p)αp . (14.3)

Define

f̃ =
∏
p

f(p)Yi (14.4)

Show that

f(Xn)→d f̃ (14.5)

and quantify the convergence rate. There are many such functions of interest on N: does this
construction offer any insight?

(Here we are thinking that f(n) = Θ(1) so the limit is non-trivial, which can usually be achieved
by scaling appropriately.) Alternatively, one could define f̃ as a limit, by truncating the sequence
of primes in some way. For example, one could look at sequences of exponents Yp for p ≤ q, and
let q →∞; or, in addition, condition that n =

∏
p p

Yp ≤ N for some N , and let N, q →∞.
A related question would be to possibly simplify the proof of the following theorem, due to

Erdős and Wintner (1939):

Theorem 14.2. A multiplicative function f has a limiting distribution if and only if the following
three series converge, where g(p) = log f(p):

∑
|g(p)|>1

1

p
,
∑
|g(p)|≤1

g(p)2

p
,
∑
|g(p)|≤1

g(p)

p
. (14.6)

Moreover, the characteristic function of the limit law is given by

φ(τ) =
∏
p

(
1− 1

p

)∑
ν≥0

piντ

pν
. (14.7)
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I took a look at the proof which seems quite complicated, though maybe this idea is already
hidden inside there somewhere.

Returning to σ, which we think of as a random variable on Ω given by

σ =
∏
p

1− p−Yp−1

1− p−1
, (14.8)

note that

Ep−jYp =
1− p−1

1− p−j−1
(14.9)

for each prime p and j ≥ 1. Thus,

Eσ =
∏
p

(1− p−1)−1
(
1− Ep−Yp−1

)
(14.10)

=
∏
p

(1− p−1)−1

1−
∑
k≥0

(1− p−1)p−2k−1

 (14.11)

=
∏
p

(1− p−1)−1

(
1− p−1(1− p−1)

1− p−2

)
(14.12)

=
∏
p

1

1− p−1
− p−1

1− p−2
(14.13)

=
∏
p

1

1− p−2
(14.14)

= ζ(2). (14.15)

In particular, this shows σ <∞ almost surely. Similarly, one can obtain

Eσ2 =
∏
p

p−4 − 2p−2 − p−1 − 1

(p−1 − 1)(p−1 + 1)(p−2 + p−1 + 1)
=
∏
p

(
1 +

3p2

p4 + p3 − p− 1

)
,≈ 2.0999 (14.16)

and for any m ∈ N,

Eσm =
∏
p

p(1− p−1)1−m
m∑
j=0

(−1)j
(
m

j

)
(pj+1 − 1)−1. (14.17)

Question 14.3. How can we compute or approximate properties the distribution function for σ?
One open question, of Pomerance, is to determine to high precision P(σ > 2), i.e. the probability
of being abundant, or more generally P(σ > u) for some fixed u. If we can get all the moments of
σ to within arbitrary precision, can we compute such probabilities to high precision?

(I think typically the moments aren’t the right thing to work with when trying to compute
probabilities. It is true that the moments determine the distribution if they grow slowly enough,
which these probably do, but my sense is that this will lead to difficult questions about the Laplace
transform. Maybe we want the Fourier transform φ from the EW theorem instead?)
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The log of σ is perhaps easier to understand. Using the expansion log(1− z) = −
∑

n≥1
zn

n ,

log σ =
∑
p

[
log(1− p−Yp−1)− log(1− p−1)

]
(14.18)

=
∑
p

∑
n≥1

p−n

n

(
1− p−nYp

)
(14.19)

This is a sum of independent random variables, each of which is relatively simple. Some algebra
yields

E log σ =
∑
p

∑
n≥1

1

n

pn − 1

p2n+1 − pn
≈ .4457. (14.20)

[Note: Mathematica sims suggest that the inner sum is p−2 +O(exp(−p)).]
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